

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved.

Application Note
https://zs.utia.cas.cz

Testing all Samples from Xilinx Vitis AI Library
2.0 on Trenz Electronic board TE0808 SoM +

TEBF0808 Carrier

Zdeněk Pohl, Lukáš Kohout, Jiří Kadlec
zdenek.pohl@utia.cas.cz, kohoutl@utia.cas.cz, kadlec@utia.cas.cz

Revision history
Rev. Date Author Description
01 30.11.2022 Z.P. Document creation

mailto:zdenek.pohl@utia.cas.cz
mailto:kohoutl@utia.cas.cz

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

ii

Contents

1 Description ... 1
2 Requirements .. 1
3 How to Build Vitis AI Library Samples and Install Models ... 1
4 Tested Demos ... 3

4.1 Demo: 3Dsegmentation .. 3
4.2 Demo: bcc ... 4
4.3 Demo: c2d2_lite .. 5
4.4 Demo: centerpoint ... 7
4.5 Demo: classification .. 7
4.6 Demo: CLOCs ..12
4.7 Demo: covid19segmentation ..13
4.8 Demo: dpu_task/fadnet ..14
4.9 Demo: dpu_task/psmnet ..16
4.10 Demo: dpu_task/ssr ...17
4.11 Demo: dpu_task/yolov3 ...18
4.12 Demo: facedetect ...19
4.13 Demo: facefeature ...20
4.14 Demo: facelandmark ..21
4.15 Demo: facequality5pt ...23
4.16 Demo: fairmot ..24
4.17 Demo: graph_runner/platenum_graph_runner ...25
4.18 Demo: graph_runner/resnet50_graph_runner ..26
4.19 Demo: graph_runner/resnet50_graph_runner_py ..27
4.20 Demo: graph_runner/tfssd_gridanchor_nms_op_graph_runner28
4.21 Demo: hourglass ..29
4.22 Demo: lanedetect ...30
4.23 Demo: medicaldetection ..31
4.24 Demo: medicalsegcell ..32
4.25 Demo: medicalsegmentation..33
4.26 Demo: multitask ...34
4.27 Demo: multitaskv3 ...35
4.28 Demo: openpose ...36
4.29 Demo: platedetect ..37
4.30 Demo: platenum ..38
4.31 Demo: pmg ..39
4.32 Demo: pointpainting ...40
4.33 Demo: pointpillars ..41
4.34 Demo: pointpillars_nuscenes ...42
4.35 Demo: polypsegmentation ...43
4.36 Demo: posedetect ..44
4.37 Demo: rcan ..45
4.38 Demo: refinedet ...47
4.39 Demo: reid ...48
4.40 Demo: retinaface ...49
4.41 Demo: RGBD Segmentation ..50
4.42 Demo: segmentation ..51
4.43 Demo: solo ..52
4.44 Demo: ssd ...53
4.45 Demo: tfssd ...54
4.46 Demo: ultrafast ..55
4.47 Demo: yolov2 ...56

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

iii

4.48 Demo: yolov3 ...56
4.49 Demo: yolov4 ...57
4.50 Demo: yolovx ...58

5 References ...59

Acknowledgement

Acknowledgement to the project StorAIge and the corresponding Czech institutional support
project No. 8A21009.

This project has received funding from the ECSEL Joint Undertaking (JU) under grant
agreement No 101007321. The JU receives support from the European Union’s Horizon
2020 research and innovation programme and France, Belgium, Czech Republic, Germany,
Italy, Sweden, Switzerland, Turkey.

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

1/59

1 Description

This document provides tutorial how to setup and run all Vitis AI Library 2.0 samples on
Trenz TE0808 SoM attached to TEBF0808 carrier board.

2 Requirements
1. Hardware:

a. Trenz TE0808 SoM installed on TEBF0808 and power source.
b. Display Port Cable.
c. Display port monitor with FHD support.
d. USB webcam with USB cable, tested with See3CAM_CU30 - 3.4 Mpix Low

Light USB Camera (Color).
e. Ethernet UTP cable.
f. 16GB SD card

2. Software:
a. Finished “Test 3: Vitis-AI Demo” [1] example from TE0808 StarterKit Vitis AI

Tutorial, i.e. it is possible to run dpu_trd (resnet50) demo.
b. SD Card image created in “Test 3: Vitis-AI Demo” written to 16GB SD card

and tested on resnet50 demo.

3 How to Build Vitis AI Library Samples and Install Models

1. Get scripts init.sh and vitis_ai_library_sample_build_all.sh
2. Edit init.sh script and set correct paths to:

a. Vitis AI github repository path (see Vitis AI Starterkit Tutorial, the path
should be ~/vitis_ai_2_0):

VITIS_AI_DIR=~/vitis_ai_2_0/

b. Path to installed platform SYSROOT (see Vitis AI Starterkit Tutorial,

the path should be ~/work/te0808_24_240/StarterKit_pfm):

PLATFORM_SYSROOTS_DIR=~/work/te0808_24_240/StarterKit_pfm

3. Start downloading support files and building all examples:

./vitis_ai_library_sample_build_all.sh all

4. Connect UTP and power cable to TE0808+TEBF0808. Power on the board.
5. Connect your PC to TE0808 using SFTP.
6. Copy all ‘samples’ folder content to board using SFTP:

Copy all content of:

~/vitis_ai_2_0/demo/Vitis_AI_Library/samples

to target board TE0808 folder:

/home/root

7. In PC open folder ~/vitis_ai_2_0/models/AI-Model-Zoo/ and use script to get
all available precompiled models from Xilinx, call:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

2/59

 python3 downloader.py

when asked for input fill: "all", then enter "0" for all and enter "2" for zcu102 &
zcu104 & kv260. Wait until all models in form of tar.gz archives are
downloaded.

IMPORTANT: Vitis library has error in one of ‘yaml’ metafiles. Before
download process is started it is needed to fix it:

 In folder model-list/pt_pointpainting_nuscenes_2.0

Open ‘model.yaml’ file for editing and replace complete line:

 “download link: download link”

With line

download link:
https://www.xilinx.com/bin/public/openDownload?filename=pointpainting_nuscenes_40000_64
_0_pt-zcu102_zcu104_kv260-r2.0.0.tar.gz

8. Connect to target board TE0808 and create folder for models:

/usr/share/vitis_ai_library/models

9. Copy all downloaded *.tar.gz files to TE0808 board using SFTP to folder:

/usr/share/vitis_ai_library/models

10. Open ssh terminal to TE0808 board and continue on target board.
11. (Optional step) Set correct date and time:

date -s "2 OCT 2006 18:00:00"
hwclock --systohc

12. Go to /usr/share/vitis_ai_library/models and extract all:

 cat *.tar.gz | tar xvzf - -i

13. (Optional step) Remove archives to save space on SD card:

 rm *.tar.gz

14. Set environment variables:

 export XLNX_VART_FIRMWARE=/mnt/sd-mmcblk1p1/dpu.xclbin

DISPLAY must be set only when X11 forwarding is NOT used:

 export DISPLAY=:0.0

15. (recommended step) Test on one example - facedetect:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

3/59

a. Open readme file located in individual folder, as an example we use
/home/root/facedetect, and find names of required models to run this
demo, in this case readme says the valid models are:

Valid model name:

densebox_320_320
densebox_640_360

b. Run example from file (as instructed in readme):

cd /home/root/facedetect
./test_jpeg_facedetect densebox_320_320 sample_facedetect.jpg

See result in file: 0_sample_facedetect_result.jpg at the same
directory.

c. Run example using webcam:
1. Connect screen using Display Port.
2. Check if linux desktop manager can be seen on screen, if not,

reboot the board.
3. Connect USB webcam.
4. Run application:

./test_video_facedetect densebox_320_320 0 -t 1

or

./test_video_facedetect densebox_640_360 0 -t 1

NOTE: Parameter -t says how many threads will be used.

4 Tested Demos

The demos are described on Xilinx Web:

https://docs.xilinx.com/r/2.0-English/ug1354-xilinx-ai-sdk/Model-Samples

In following subsection we present results of running most of them. Each demo lists available
models, then the command tested is presented. After that the input and output is shown and
summary at the end describes what we have found. We usually execute test_jpeg_* on
images and test_video_* using USB webcam. Other testing binaries ‘test_performance_’ and
‘test_accuracy_’ are not tested. Performance figures can be found on Xilinx web referenced
above.

4.1 Demo: 3Dsegmentation

Xilinx description: The 3D segmentation library can support the SalsaNext model, which

is used for the uncertainty-aware semantic segmentation of a full 3D LiDAR point cloud in
real-time. SalsaNext is the next version of SalsaNet which has an encoder-decoder
architecture, where the encoder unit has a set of ResNet blocks and the decoder unit
combines upsampled features from the residual blocks.

Models:

https://docs.xilinx.com/r/2.0-English/ug1354-xilinx-ai-sdk/Model-Samples

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

4/59

salsanext_pt
salsanext_v2_pt

Command:

 ./test_jpeg_3Dsegmentation salsanext_pt scan_x.txt scan_y.txt scan_z.txt

scan_remission.txt

Input:
 scan_x.txt scan_y.txt scan_z.txt scan_remission.txt
Output:
 0_3Dsegmentation_result.txt

Summary:

 It is not very clear without further investigation what is meaning of input and output
values.

4.2 Demo: bcc

Xilinx description: Bayesian Crowd Counting is a neural network that is used for counting

the number of individuals in a crowd. The input is a picture of a crowd whose size you would
like to estimate. The output is the estimated number of individuals in the crowd.

Models:

bcc_pt

Command:

 ./test_jpeg_bcc bcc_pt sample_bcc.jpg

Input:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

5/59

Output:

Count of people in the crowd.

Summary:

Counts number of people in crowd in presented input image. Output is shown in

terminal.

4.3 Demo: c2d2_lite

Xilinx description: Colonoscopy Coverage Deficiency via Depth algorithm, or C2D2, is a
machine learning-based approach for improving colonoscopy coverage. The C2D2 network
is a cascading structure. The inputs are 300 serialized gray images and the output is
coverage. The C2D2_Lite_0_pt model is responsible for extracting the features of each
image and the C2D2_Lite_1_pt model predicts a coverage value by inputting the
characteristics of 300 pictures.

Models:

 C2D2_Lite_0_pt
 C2D2_Lite_1_pt

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

6/59

Command:

 ./test_jpeg_c2d2_lite C2D2_Lite_0_pt C2D2_Lite_1_pt image.list

Input (one of 300 images shown):

Output:

Summary:

Demo takes list of 300 images and presents result as a number in terminal. Without

more detailed study of the example is not clear what the input and output is.

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

7/59

4.4 Demo: centerpoint

Xilinx description: 4D radar is a high-resolution long-range radar sensor that not only
detects the distance, relative speed, and azimuth of objects, but also their height above the
road level. Unlike LiDAR, it works well in all weather conditions, including fog and heavy rain.
A state-of-the-art anchor-free 3D object detector CenterPoint is used. It is trained on the 4D
radar data of the open dataset Astyx. Because the annotated samples are limited and the 4D
radar point clouds are sparse, the 3D bounding box prediction is naturally not so good. It is
observed that although vehicles near ego cars could be correctly detected, there are still
some false positive predictions and some objects at longer distances that could not be
detected. 4D radar object detection and fusion with camera image could boost the
performance by a large margin.

Models:

centerpoint_0_pt
 centerpoint_1_pt

Command:

 ./test_file_centerpoint centerpoint_0_pt centerpoint_1_pt input_1.txt

Input:

input_1.txt

Output:

Summary:
It is not very clear without further investigation what is meaning of input and output

values.

4.5 Demo: classification

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

8/59

Xilinx description: The Classification library is used to classify images. Such neural
networks are trained on ImageNet for ILSVRC and they can identify the objects from a
thousand classes. The Vitis AI Library integrates networks including, but not limited to,
ResNet18, ResNet50, Inception_v1, Inception_v2, Inception_v3, Inception_v4, VGG,
mobilenet_v1, mobilenet_v2, and Squeezenet into Xilinx libraries. The input is a picture with
an object and the output is the top-K most probable category.

Models:

resnet50
 resnet18
 inception_v1

inception_v2
inception_v3

 inception_v4
 mobilenet_v2
 squeezenet different test_ application needed, see below

inception_resnet_v2_tf
 inception_v1_tf
 inception_v2_tf
 inception_v3_tf
 inception_v4_2016_09_09_tf
 mobilenet_v1_0_25_128_tf
 mobilenet_v1_0_5_160_tf
 mobilenet_v1_1_0_224_tf
 mobilenet_v2_1_0_224_tf
 mobilenet_v2_1_4_224_tf
 mobilenet_edge_0_75_tf
 mobilenet_edge_1_0_tf
 resnet_v1_101_tf
 resnet_v1_152_tf
 resnet_v1_50_tf
 resnet_v2_101_tf
 resnet_v2_152_tf
 resnet_v2_50_tf
 vgg_16_tf
 vgg_19_tf
 MLPerf_resnet50_v1.5_tf
 resnet50_tf2
 inception_v3_tf2
 mobilenet_1_0_224_tf2
 squeezenet_pt different test_ application needed, see below
 resnet50_pt
 inception_v3_pt
 efficientNet-edgetpu-S_tf
 efficientNet-edgetpu-M_tf
 efficientNet-edgetpu-L_tf
 efficientnet-b0_tf2
 ofa_resnet50_0_9B_pt
 person-orientation_pruned_558m_pt classification of person orientation, see below
 ofa_depthwise_res50_pt
 mobilenet_v3_small_1_0_tf2

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

9/59

Command:

./test_video_classification resnet50 0 -t 1

Input:

USB webcam

Output:

Models:

squeezenet
squeezenet_pt

Command:

./test_jpeg_classification_squeezenet squeezenet_pt sample_classification.jpg

Input:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

10/59

Output:

Models:

person-orientation_pruned_558m_pt

Command:

./test_jpeg_classification person-orientation_pruned_558m_pt sample_orientation.jpg

Input:

Output:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

11/59

Command:

./test_video_classification person-orientation_pruned_558m_pt 0 -t 1

Input:

USB webcam

Output:

Summary:
Many different models can be used to classify image or classify on video from USB

webcam. Result is shown in text overlay or in terminal. Models squeezenet and
squeezenet_pt can run only on images and result is shown in terminal. Model person-

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

12/59

orientation_pruned_558m_pt is classifying orientation of person in image/video. Result is
in terminal or text overlay.

4.6 Demo: CLOCs

Xilinx description: CLOCs is a novel Camera-LiDAR fusion method for 3D object
detection in autonomous driving. Being fed with the predictions from the 2D detection
pipeline (with camera image as input) and 3D detection pipeline (with LiDAR point cloud as
input) in parallel, a light-weight fusion network is trained to fuse the 2D/3D prediction properly
and refine the scores of the 3D detection results. CLOCs decouples the 2D/3D pipelines in
the fusion framework, making it convenient to adopt different 2D/3D pipelines to strike a
balance between accuracy and efficiency. The following images show the result of CLOCs.

Models:

model_0: clocs_yolox_pt
model_1: clocs_pointpillars_kitti_0_pt
model_2: clocs_pointpillars_kitti_1_pt
model_3: clocs_fusion_cnn_pt

Command:

 ./test_bin_clocs clocs_yolox_pt clocs_pointpillars_kitti_0_pt

clocs_pointpillars_kitti_1_pt clocs_fusion_cnn_pt ./000002.txt

Input:

Likely all files 000002.*

set of binary data (likely LiDAR) + corresponding camera image

Output:

Bounding boxes

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

13/59

Summary:

Demo requires set of image + LiDAR data to find bounding boxes coordinates.

4.7 Demo: covid19segmentation

Xilinx description: The Covid19 segmentation library can support the COVID-Net model
which is a deep convolutional neural network design tailored for the detection of COVID-19
cases from chest X-ray (CXR) images.

Models:

FPN-resnet18_covid19-seg_pt

Command:

./test_jpeg_covid19segmentation FPN-resnet18_covid19-seg_pt
samples_covid19segmentation.jpg

Input:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

14/59

Output:

Classification and infected area images

Summary:

Demo is returning classification result and infected area images.

4.8 Demo: dpu_task/fadnet

Xilinx description: FADNet is a model used for depth estimation. It is a fast and accurate
network for disparity estimation. It has three main features:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

15/59

• It exploits efficient 2D-based correlation layers with stacked blocks to preserve
fast computation.

• It combines the residual structures to make the deeper model easier to learn.
• It contains multiscale predictions to exploit a multiscale weight scheduling

training technique to improve the accuracy.

Models:

FADNet_0_pt
FADNet_1_pt
FADNet_2_pt

Pruned models:

FADNet_pruned_0_pt
FADNet_pruned_1_pt
FADNet_pruned_2_pt

Command:

 ./demo_fadnet demo_fadnet_left.png demo_fadnet_right.png

or with pruned model:

env
FADNET_MODEL_0=/usr/share/vitis_ai_library/models/FADNet_pruned_0_pt/FADNe
t_pruned_0_pt.xmodel
FADNET_MODEL_1=/usr/share/vitis_ai_library/models/FADNet_pruned_1_pt/FADNe
t_pruned_1_pt.xmodel
FADNET_MODEL_2=/usr/share/vitis_ai_library/models/FADNet_pruned_2_pt/FADNe
t_pruned_2_pt.xmodel ./demo_fadnet demo_fadnet_left.png demo_fadnet_right.png

Input:

Output:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

16/59

Summary:

Output is depth estimation from input stereo images.

4.9 Demo: dpu_task/psmnet

Xilinx description: PSMNet is a pyramid stereo matching network that can be used for
depth estimation. It consists of two main modules: spatial pyramid pooling and 3D CNN. The
spatial pyramid pooling module takes advantage of the capacity of global context information
by aggregating context in different scales and locations to form a cost volume. The 3D CNN
regularizes cost volume using stacked multiple hourglass networks with intermediate
supervision.

Models:

PSMNet_0_int
PSMNet_1_int
PSMNet_2_int

Command:

 ./demo_psmnet demo_psmnet_left.png demo_psmnet_right.png

Input:

Output:

-

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

17/59

Summary:
 This demo is not working as neither „PSMNet_0_int“ nor „PSMNet_pruned_0_int“ are

not available.

4.10 Demo: dpu_task/ssr

Xilinx description: Specular reflections that often appear in the endoscopy images can
disturb the surgeon’s observation and judgment. The SSR model is an end-to-end network
that can be used to remove the specular reflections in the endoscopy images thereby
improving the image quality.

Models:

ssr_pt

Command:

 ./demo_ssr /usr/share/vitis_ai_library/models/ssr_pt/ssr_pt.xmodel sample_ssr.bmp

Input:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

18/59

Output:

Summary:
 Demo removes reflections in image.

4.11 Demo: dpu_task/yolov3

Xilinx description: YOLOv3 is a neural network used to detect objects. The input is a
picture with one or more objects and the output is a vector of the result struct which is
composed of the detected information.

Models:

yolov3_voc

Command:

 ./demo_yolov3 /usr/share/vitis_ai_library/models/yolov3_voc/yolov3_voc.xmodel \
 demo_yolov3.jpg

Input:

Output:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

19/59

Summary:
 Demo shows yolov3 detecting objects in image.

4.12 Demo: facedetect

Xilinx description: The Face Detection library uses the DenseBox neural network to
detect human faces. The input is a picture with the faces you want to detect and the output is
a vector containing the information of each detection box.

Models:

densebox_320_320
densebox_640_360

Command:

 ./test_video_facedetect densebox_640_360 0 -t 1

Input:

USB webcam

Output:

Summary:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

20/59

 Demo detects faces in video stream or in images.

4.13 Demo: facefeature

Xilinx description: The face feature models are used for face recognition. They can
extract the features of a person's face. The output of these models is 512 features. If you
have two different images and you want to know if they are of the same person, use these
models to extract features of the two images, and then use calculation functions and mapped
functions to get the similarity of the two images.

Models:

facerec_resnet20
 facerec_resnet64
 facerec-resnet20_mixed_pt

Command:

 ./test_jpeg_facefeature facerec_resnet20 sample_facefeature.jpg

Input:

Output:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

21/59

Summary:
 Demo returns feature vector which can be compared to evaluate similarity of faces.

4.14 Demo: facelandmark

Xilinx description: The Face Landmark network is used to detect five key points on a
human face. The five points include the left eye, the right eye, the nose, the left corner of the
lips, and the right corner of the lips. This network is used to correct face direction (what this
means is if a face is not directly facing the camera (e.g., tilted 20 degrees left or right), it is
"adjusted" to face the camera directly) before face feature extraction. The input image should
be a face that is detected by the face detection network. The output of the network is the five
key points. The five key points are normalized.

Models:

face_landmark

Command:

 ./test_jpeg_facelandmark face_landmark sample_facelandmark.jpg

Input:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

22/59

Output:

Summary:
 Demo detects face landmarks in images.

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

23/59

4.15 Demo: facequality5pt

Xilinx description: The Face Quality library uses the face quality network to detect the
quality score of a face. If a face is clear and a front face, the score is high. On the contrary, a
blurry or side face will get a low score. The scores range from 0 to 1. It also provides face
landmark positions. The input is a face that is detected by the face detect network and the
output contains a quality score and five landmark key points.

Models:

face-quality
face-quality_pt

Command:

 ./test_jpeg_facequality5pt face-quality sample_facequality5pt.jpg

Input:

Output:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

24/59

Summary:
 Demo evaluates face quality and return also landmark points.

4.16 Demo: fairmot

Xilinx description: Fairmot is a multi-task model that can detect and get the re-ID
features of the detected object at the same time. FairMot detects the person in the picture
and provides the features of the detected target. This model can be used for tracking.

Models:

FairMot_pt

Command:

 ./test_video_fairmot FairMot_pt 0 -t 1

Input:

USB webcam

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

25/59

Output:

Summary:
 Demo detcts people in video and tracks them.

4.17 Demo: graph_runner/platenum_graph_runner

Xilinx description: The Plate Recognition library uses a classification network to
recognize license plate numbers (Chinese license plates only). The input is a picture of the
license plate that is detected by plate detect. The output is a structure containing license
plate number information. The following image shows the result of the plate recognition.

Models:

plate_num

Command:

./platenum_graph_runner
/usr/share/vitis_ai_library/models/plate_num/plate_num.xmodel sample_platenum.jpg

Input:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

26/59

Output:

Summary:
 Demo reads chinese licence plates. Demontrates Vitis AI Library API_3 based on

Graph_runner.

4.18 Demo: graph_runner/resnet50_graph_runner
Xilinx description: resnet50 classification using Vitis AI Library API_3 based on

Graph_runner.

Models:

resnet50

Command:

./resnet50_graph_runner /usr/share/vitis_ai_library/models/resnet50/resnet50.xmodel
sample_classification.jpg

Input:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

27/59

Output:

Summary:
 Image classification, model resnet50, demontrates API_3 (graph runner).

4.19 Demo: graph_runner/resnet50_graph_runner_py
Xilinx description: Resnet50 clasification using Vitis AI Library API_3 based on

Graph_runner. Demo is implemented using Python.

Models:

resnet50

Command:

 python3 resnet50.py /usr/share/vitis_ai_library/models/resnet50/resnet50.xmodel

sample_classification.jpg

Input:

Output:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

28/59

Summary:
 Python implementation of previous demo, classification, model resnet50, demontrates

API_3 (graph runner).

4.20 Demo: graph_runner/tfssd_gridanchor_nms_op_graph_runner
Xilinx description: The SSD Detection library is commonly used with the SSD neural

network. SSD is a neural network that is used to detect objects. The input is a picture with
some objects you want to detect. The output is a vector of the resulting structure containing
the information of each detection box. The following image shows the result of SSD
detection. API_3 Graph runner is used.

Models:

ssd_mobilenet_v1_coco_tf_trt_op_b4096

Command:

tfssd_gridanchor_nms_op_graph_runner
ssd_mobilenet_v1_coco_tf_trt_op_b4096.xmodel sample_tfssd.jpg

Input:

 -

Output:

 -

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

29/59

Summary:
 In demo is missing input image. If one provided it runs but says nothing.

4.21 Demo: hourglass
Xilinx description: The Hourglass library is used to detect the posture of the human body.

It is represented by an array of 16 joint points. Joint points are arranged in order:
0 - r ankle, 1 - r knee, 2 - r hip, 3 - l hip, 4 - l knee, 5 - l ankle,
6 - pelvis, 7 - thorax, 8 - upper neck, 9 - head top, 10 - r wrist,
11 - r elbow, 12 - r shoulder, 13 - l shoulder, 14 - l elbow, 15 - l wrist
This network can detect the posture of only one person in the input image. The input of

the network is 256x256.

Models:

hourglass-pe_mpii

Command:

 ./test_video_hourglass hourglass-pe_mpii 0 -t1

Input:

USB Webcam

Output:

Summary:
 Demo runs on video or images and detects body posture. Results are not very

reliable and fast.

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

30/59

4.22 Demo: lanedetect
Xilinx description: The Road Line Detection library is used to draw lane lines in ADAS

applications. Each lane line is represented by a number representing the category. A
vector<Point> is used to draw the lane line. In the test code, a color map is used. Different
types of lane lines are represented by different colors. The point is stored in the container
vector, and the polygon interface cv::polylines() of OpenCV is used to draw the lane
line.

Models:

vpgnet_pruned_0_99

Command:

 ./test_video_lanedetect vpgnet_pruned_0_99 0 -t 1

Input:

USB Webcam

Output:

Summary:
 Demo runs on video or images detects lanes. It doesn’t work very vell for us. Possible

reasons are: strong radial distortion of our camera or different road lines used in training data
(chinese vs US vs europe).

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

31/59

4.23 Demo: medicaldetection
Xilinx description: The RefineDet model is based on vgg16. It is used for medical

detection and can detect five types of diseases, namely, BE, cancer, HGD, polyp, and
suspicious from an input endoscopy image like the Endoscopy Disease Detection and
Segmentation database (EDD2020).

Models:

RefineDet-Medical_EDD_tf

Command:

./test_jpeg_medicaldetection RefineDet-Medical_EDD_tf
sample_medicaldetection.jpg

Input:

Output:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

32/59

Summary:
 Demo runs on video or jpeg images. Testing video referred in readme is not present.

4.24 Demo: medicalsegcell
Xilinx description: The nucleus is an organelle present within all eukaryotic cells,

including human cells. Aberrant nuclear shape can be used to identify cancer cells, for
example, pap smear tests for the diagnosis of cervical cancer. Medical segmentation cell
models offer nuclear segmentation in digital microscopic tissue images which can enable
extraction of high-quality features for nuclear morphometric and other analyses in
computational pathology. The following images show the results of cell segmentation.

Models:

medical_seg_cell_tf2

Command:

 ./test_jpeg_medicalsegcell medical_seg_cell_tf2 sample_medicalsegcell.png

Input:

Output:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

33/59

Summary:
 Demo runs on video or jpeg images, however video is not present.

4.25 Demo: medicalsegmentation
Xilinx description: Endoscopy is a common clinical procedure for the early detection of

cancers in hollow organs such as nasopharyngeal cancer, esophageal adenocarcinoma,
gastric cancer, colorectal cancer, and bladder cancer. Accurate and temporally consistent
localization and segmentation of diseased region-of-interests enable precise quantification
and mapping of lesions from clinical endoscopy videos, which is critical for monitoring and
surgical planning.

The medical segmentation model is used to classify diseased region-of-interests in the

input image. It can be classified into many categories, including BE, cancer, HGD, polyp, and
suspicious.

libmedicalsegmentation is a segmentation library that can be used in the segmentation

of multiclass diseases in endoscopy. It offers simple interfaces for developers to deploy
segmentation tasks on Xilinx FPGAs. The following is an example of medical segmentation,
where the goal is to mark the diseased region.

Models:

FPN_Res18_Medical_segmentation

Command:

./test_jpeg_medicalsegmentation FPN_Res18_Medical_segmentation
sample_medicalsegmentation.jpg

Input:

Output:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

34/59

Summary:
 Demo runs with jpeg images and resut is written to jpeg file.

4.26 Demo: multitask
Xilinx description: The MultiTask library is appropriate for a model that has multiple

subtasks. The MultiTask model in the Vitis AI Library has two subtasks: semantic
segmentation and SSD detection. The following table lists the MultiTask models supported
by the Vitis AI Library.

Models:

multi_task
MT-resnet18_mixed_pt

Command:

 ./test_video _multitask multi_task 0 -t 1

Input:

USB webcam

Output:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

35/59

Summary:
 Demo runs with jpeg images or video.

4.27 Demo: multitaskv3
Xilinx description: MultiTask V3 aims to do different tasks in autonomous driving

scenarios simultaneously while achieving good performance and efficiency. The tasks
include object detection, segmentation, lane detection, drivable area segmentation, and
depth estimation, which are important components of the autonomous driving perception
module.

Models:

multi_task_v3_pt

Command:

 ./test_video_multitaskv3 multi_task_v3_pt 0 -t 1

Input:

USB webcam

Output:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

36/59

Summary:
 Demo runs with jpeg images or webcam video.

4.28 Demo: openpose
Xilinx description: The Openpose Detection library is used to detect the posture of the

human body. The posture is represented by an array of 14 key points as shown below:
 0: head, 1: neck, 2: L_shoulder, 3:L_elbow, 4: L_wrist, 5: R_shoulder,
 6: R_elbow, 7: R_wrist, 8: L_hip, 9: L_knee, 10: L_ankle, 11: R_hip,
 12: R_knee, 13: R_ankle

The input of the network is 368x368.

Models:

openpose_pruned_0_3

Command:

 ./test_video_openpose openpose_pruned_0_3 0 -t 1

Input:

USB webcam

Output:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

37/59

Summary:
 Demo runs with jpeg images or webcam video.

4.29 Demo: platedetect
Xilinx description: The Plate Detection library uses the DenseBox neural network to

detect license plates. The input is a picture of the vehicle that is detected by the SSD and the
output is a structure containing the plate location information.

Models:

plate_detect

Command:

 ./test_video_platedetect plate_detect 0 -t 1

Input:

USB webcam

Output:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

38/59

Summary:
 Demo runs with jpeg images or video. It is not working very well with our licence

plates.

4.30 Demo: platenum
Xilinx description: The Plate Recognition library uses a classification network to

recognize license plate numbers (Chinese license plates only). The input is a picture of the
license plate that is detected by plate detect. The output is a structure containing license
plate number information.

Models:

plate_num

Command:

 ./test_video_platenum plate_num 0 -t 1

Input:

Output:

Summary:
 Demo runs with jpeg images or video. Works only with chinese license plates.

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

39/59

4.31 Demo: pmg
Xilinx description: PMG model can be used for fine-grained goods product recognition,

for example, RP2K dataset. The model is Resnet18-based and the detailed model structure
is shown in the picture below. On rp2k dataset, this model can achieve 96.4% top-1 float
accuracy with 13.82M parameters and 2.28G Flops. Model final deployment and quantized
top-1 accuracies are 96.19% and 96.18%, respectively.

Models:

pmg_pt

Command:

 ./test_jpeg_pmg pmg_pt sample_pmg.jpg

Input:

Output:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

40/59

Summary:
 Demo runs with jpeg images and performs classification.

4.32 Demo: pointpainting
Xilinx description: For AD/ADAS systems, sensor-fusion algorithms play a significant role

in providing high-quality perception and increasing the safety level for driving. PointPainting
provides a sensor-fusion framework that takes advantage of 2D semantic segmentation and
3D object detection models. First, a network is applied to the camera images for semantic
segmentation. Based on the semantic information and calibration information (on camera
and LiDAR), the LiDAR point clouds are projected to the images and fused with the semantic
information to get the painted point clouds. Finally, the painted point clouds are consumed by
the 3D object detector to achieve better perception.PMG model can be used for fine-grained
goods product recognition, for example, RP2K dataset. The model is Resnet18-based and
the detailed model structure is shown in the picture below. On rp2k dataset, this model can
achieve 96.4% top-1 float accuracy with 13.82M parameters and 2.28G Flops. Model final
deployment and quantized top-1 accuracies are 96.19% and 96.18%, respectively.

Models:

seg_model: semanticfpn_nuimage_576_320_pt
pointpillars_model_0: pointpainting_nuscenes_40000_64_0_pt
pointpillars_model_1: pointpainting_nuscenes_40000_64_1_pt

Command:

./test_bin_pointpainting semanticfpn_nuimage_576_320_pt
pointpainting_nuscenes_40000_64_0_pt pointpainting_nuscenes_40000_64_1_pt
./sample_pointpainting.info

Input:

.info file contains references to camera and lidar data

Output:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

41/59

Summary:
 Demo runs with data from camera and lidar.

4.33 Demo: pointpillars
Xilinx description: Object detection in point clouds is an important aspect of many

robotics applications such as autonomous driving. The pointpillars model is a novel deep
network and encoder that can be trained end-to-end on LiDAR point clouds. It offers the best
architecture for 3D object detection from LiDAR.

Models:

PointNet: pointpillars_kitti_12000_0_pt
RPN: pointpillars_kitti_12000_1_pt

Command:

env XLNX_POINTPILLARS_PRE_MT=1 ./test_bin_pointpillars
pointpillars_kitti_12000_0_pt pointpillars_kitti_12000_1_pt sample_pointpillars.bin
sample_pointpillars.png

Input:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

42/59

+ binary LiDAR data

Output:

Summary:
 Demo runs with data from image and binary lidar data, returns objects found in lidar

and image data.

4.34 Demo: pointpillars_nuscenes
Xilinx description: PointPillars is an efficient network for real-time 3D object detection on

the point cloud. Trained on the nuScenes dataset, this model gives 3D bounding boxes and
speed prediction for ten classes (including some kinds of vehicles, pedestrians, barriers, and
traffic cones) in the surround-view range. With multisweep point clouds as input, PointPillars
can achieve higher accuracy of 3D object detection and speed estimation at the cost of
increasing the complexity of the pre-processing part.

Models:

model_0: pointpillars_nuscenes_40000_64_0_pt
model_1: pointpillars_nuscenes_40000_64_1_pt

Command:

./test_bin_pointpillars_nuscenes pointpillars_nuscenes_40000_64_0_pt
pointpillars_nuscenes_40000_64_1_pt ./sample_pointpillars_nuscenes.info

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

43/59

Input:

Binary data listed in .info file

Output:

Summary:
 Demo runs with data from binary data, returns coordinates of objects found (bboxes).

4.35 Demo: polypsegmentation
Xilinx description: HarDNet-MSEG is a new convolution neural network for polyp

segmentation. It consists of a backbone and a decoder. The backbone is a low memory
traffic CNN called HarDNet68, which has been successfully applied to various CV tasks
including image classification, object detection, multi-object tracking, and semantic
segmentation. The decoder part is inspired by the Cascaded Partial Decoder, which is known
for fast and accurate salient object detection.

Models:

HardNet_MSeg_pt

Command:

 ./test_jpeg_polypsegmentation HardNet_MSeg_pt sample_polypsegmentation.png

Input:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

44/59

Output:

Summary:
 Demo runs with jped or video, however video is not available.

4.36 Demo: posedetect
Xilinx description: The Pose Detection library is used to detect the posture of the human

body. This library includes a neural network that can identify 14 key points on the human
body (you can use our SSD detection library). The input is a picture that is detected by the
pedestrian detection neural network. The output is a structure containing the coordinates of
each point. The following image shows the result of pose detection.

Models:

sp_net

Command:

 ./test_video_posedetect_with_ssd 0 -t 1

Input:

USB webcam

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

45/59

Output:

Summary:
 Demo provides test_jpeg and test_video executables. Both do expect output image

from person detector. To run it together with ssd detector use
test_video_posedetect_with_ssd as shown above.

4.37 Demo: rcan
Xilinx description: RCAN model is a super-resolution network. The corresponding high-

resolution image is reconstructed from the low-resolution image. Based on the original
image, the length and width are enlarged by two times. It has important application value in
the fields of monitoring equipment, satellite images, and medical imaging. The following
images show the result of RCAN. The image is still clear after zooming in.

Models:

rcan_pruned_tf
drunet_pt
SESR_S_pt

Command:

 ./test_jpeg_rcan rcan_pruned_tf sample_rcan.png

./test_jpeg_rcan drunet_pt sample_drunet.png
 ./test_jpeg_rcan SESR_S_pt sample_sesr.png

Input:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

46/59

Output:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

47/59

Summary:

 Input image is processed and output image is 2x bigger in each dimension while still
sharp.

4.38 Demo: refinedet
Xilinx description: RefineDet is a neural network that is used to detect human bodies.

The input is a picture with some individuals that you would like to detect. The output is a
vector of the resulting structure that contains each box’s information.

Models:

refinedet_baseline
 refinedet_pruned_0_8
 refinedet_pruned_0_92
 refinedet_pruned_0_96
 refinedet_VOC_tf

Command:

 ./test_video_refinedet refinedet_baseline 0 -t 1

Input:

 USB webcam

Output:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

48/59

Summary:

 Detection of people in video or jpeg.

4.39 Demo: reid
Xilinx description: The task of person re-identification is to identify a person of interest at

any time or place. This is done by extracting the image feature and comparing the features.
Images of the same person should have similar features and have small feature distances,
while images of different persons have large feature distances. Given a queried image and a
pile of candidate images, the image that has the smallest feature distance is identified as the
same person as the queried image. The following table lists the ReID detection models
supported by the Vitis AI Library.

Models:

 personreid-res50_pt
 personreid-res18_pt
 facereid-large_pt
 facereid-small_pt

Command:

 ./test_jpeg_reid personreid-res50_pt sample_reid_001.jpg sample_reid_002.jpg

./test_jpeg_reid facereid-large_pt face_reid_001.jpg face_reid_002.jpg

Input:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

49/59

or

Output:

Summary:

 Input are two images of person or of faces. Output to terminal is their similarity.

4.40 Demo: retinaface
Xilinx description: This retinaface network is used to detect human face and face

landmarks. The input is a picture with some faces you would like to detect and the output
contains face positions, scores, and landmarks of faces.

Models:

 retinaface

Command:

 ./test_video_retinaface retinaface 0 -t 1

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

50/59

Input:

USB webcam

Output:

Summary:

 Detects faces and face landmarks in jpegs or video.

4.41 Demo: RGBD Segmentation
Xilinx description: SA-Gate is a neural network that is used for indoor segmentation. The

input is a pair of an RGB image and an HHA map generated with the depth map. The output
is a heat map where each pixel is predicted with a semantic category, like chair, bed, and
other objects typically found indoors.

Models:

 SA_gate_pt

Command:

./test_jpeg_RGBDsegmentation SA_gate_pt sample_rgbdsegmentation_bgr.jpg
sample_rgbdsegmentation_hha.jpg

Input:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

51/59

Output:

-

Summary:

 Demo cannot work as model is not preset between precompiled models loaded in this
tutorial.

4.42 Demo: segmentation
Xilinx description: Semantic segmentation assigns a semantic category to each pixel in

the input image, that is, it identifies pixels as part of an object, say, a car, a road, a tree, a
horse, etc. libsegmentation is a segmentation library that can be used in ADAS applications.
It offers simple interfaces for a developer to deploy segmentation tasks on a Xilinx® FPGA.

The following is an example of semantic segmentation, where "blue-gray" denotes the

sky, "green" denotes trees, "red" denotes people, "dark blue" denotes cars, "plum" denotes
the road, and "gray" denotes structures.

Models:

 fpn
 semantic_seg_citys_tf2
 unet_chaos-CT_pt
 FPN-resnet18_Endov
 SemanticFPN_cityscapes_pt
 ENet_cityscapes_pt
 mobilenet_v2_cityscapes_tf
 SemanticFPN_Mobilenetv2_pt

Command:

 ./test_video_segmentation fpn 0 -t 1

Input:

USB webcam

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

52/59

Output:

Summary:

 Test shows semantic segmentation on video or jpeg.

4.43 Demo: solo
Xilinx description: Segment objects by locations (SOLO) is a simple and flexible

framework applied for accomplishing instance segmentation in digital image processing and
computer vision tasks. It is based on the notion of “instance categories” for instance
segmentation in which each pixel within an instance of an object is assigned a category
based on its location and size.

Models:

 solo_pt

Command:

 ./test_video_solo solo_pt 0 -t 1

Input:

USB webcam

Output:

-

Summary:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

53/59

 Demo cannot work as model is not preset between precompiled models loaded in this
tutorial.

4.44 Demo: ssd
Xilinx description: The SSD Detection library is commonly used with the SSD neural

network. SSD is a neural network that is used to detect objects. The input is a picture with
some objects you want to detect. The output is a vector of the resulting structure containing
the information of each detection box. The following image shows the result of SSD
detection.

Models:

 ssd_pedestrian_pruned_0_97
 ssd_traffic_pruned_0_9
 ssd_adas_pruned_0_95
 ssd_mobilenet_v2
 mlperf_ssd_resnet34_tf

Command:

 ./test_video_ssd ssd_pedestrian_pruned_0_97 0 -t 1

./test_video_ssd ssd_traffic_pruned_0_9 0 -t 1

Input:

USB webcam

Output:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

54/59

Summary:

 Object detection. Different models detect different objects.

4.45 Demo: tfssd
Xilinx description: The SSD Detection library is commonly used with the SSD neural

network. SSD is a neural network that is used to detect objects. The input is a picture with
some objects you want to detect. The output is a vector of the resulting structure containing
the information of each detection box. The following image shows the result of SSD
detection.

Models:

 ssd_mobilenet_v1_coco_tf
 ssd_mobilenet_v2_coco_tf
 ssd_resnet_50_fpn_coco_tf
 ssd_inception_v2_coco_tf
 ssdlite_mobilenet_v2_coco_tf

mlperf_ssd_resnet34_tf not working

Command:

 ./test_video_tfssd ssd_mobilenet_v1_coco_tf 0 -t 1

./test_video_tfssd ssd_mobilenet_v2_coco_tf 0 -t 1

./test_video_tfssd ssd_resnet_50_fpn_coco_tf 0 -t 1

Input:

USB webcam

Output:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

55/59

Summary:

 SSD Object detection using tensorFlow models.

4.46 Demo: ultrafast
Xilinx description: UltraFast Road Line Detection is a lane detection method that treats

the process of lane detection as a row-based selection problem using global features. It can
run at high FPS with comparable performance. The input is an image with a lane in it and the
output is a structure holding the lane information. The following image shows the result of the
UltraFast road line detection.

Models:

 ultrafast_pt

Command:

 ./test_jpeg_ultrafast ultrafast_pt sample_ultrafast.jpg

Input:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

56/59

Output:

Summary:

 Detection of road lanes, file to file.

4.47 Demo: yolov2
Xilinx description: YOLOv2 does the same thing as YOLOv3, which is an upgraded

version of YOLOv2. The following table lists the YOLOv2 detection models supported by the
Vitis AI Library.

Models:

 yolov2_voc
 yolov2_voc_pruned_0_66
 yolov2_voc_pruned_0_71
 yolov2_voc_pruned_0_77

Command:

 -

Input:

 -

Output:

 -

Summary:

 Skipped as it does the same as YOLOv3

4.48 Demo: yolov3
Xilinx description: YOLOv3 is a neural network used to detect objects. The input is a

picture with one or more objects and the output is a vector of the result structure which is
composed of the detected information.

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

57/59

Models:

yolov3_adas_pruned_0_9
 yolov3_voc
 yolov3_bdd
 yolov3_voc_tf

Command:

 ./test_video_yolov3 yolov3_adas_pruned_0_9 0 -t 1

Input:

 USB webcam

Output:

Summary:

 YOLOv3 detector.

4.49 Demo: yolov4
Xilinx description: YOLOv4 is an upgraded version of YOLOv3 and does the same thing

as YOLOv3. The following table lists the YOLOv4 detection models supported by the Vitis AI
Library.

Models:

yolov4_leaky_spp_m
 yolov4_leaky_spp_m_pruned_0_36

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

58/59

Command:

./test_video_yolov4 yolov4_leaky_spp_m 0 -t 1

Input:

 USB webcam

Output:

Summary:

 YOLOv4 detector.

4.50 Demo: yolovx
Xilinx description: YOLOX is an anchor-free version of YOLO, with a simpler design but

better performance. It aims to bridge the gap between the research and industrial
communities. Based on the best general detection framework of YOLOX, and modified the
TSD-YOLOX network for Traffic Sign Detection. The input size of the model is 640*640, and
the output is the score and coordinates of the object.

Models:

tsd_yolox_pt

Command:

./test_video_yolovx tsd_yolox_pt 0 -t 1

Input:

https://zs.utia.cas.cz

© 2022 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

59/59

 USB webcam

Output:

Summary:

 YOLOvx detector, detects traffic signs.

5 References

[1] TE0808 Starterkit Vitis AI Tutorial, Trenz Electronic Wiki: https://wiki.trenz-
electronic.de/display/PD/TE0808+Starterkit+Vitis+AI+Tutorial

https://wiki.trenz-electronic.de/display/PD/TE0808+Starterkit+Vitis+AI+Tutorial
https://wiki.trenz-electronic.de/display/PD/TE0808+Starterkit+Vitis+AI+Tutorial

	1 Description
	2 Requirements
	3 How to Build Vitis AI Library Samples and Install Models
	4 Tested Demos
	4.1 Demo: 3Dsegmentation
	4.2 Demo: bcc
	4.3 Demo: c2d2_lite
	4.4 Demo: centerpoint
	4.5 Demo: classification
	4.6 Demo: CLOCs
	4.7 Demo: covid19segmentation
	4.8 Demo: dpu_task/fadnet
	4.9 Demo: dpu_task/psmnet
	4.10 Demo: dpu_task/ssr
	4.11 Demo: dpu_task/yolov3
	4.12 Demo: facedetect
	4.13 Demo: facefeature
	4.14 Demo: facelandmark
	4.15 Demo: facequality5pt
	4.16 Demo: fairmot
	4.17 Demo: graph_runner/platenum_graph_runner
	4.18 Demo: graph_runner/resnet50_graph_runner
	4.19 Demo: graph_runner/resnet50_graph_runner_py
	4.20 Demo: graph_runner/tfssd_gridanchor_nms_op_graph_runner
	4.21 Demo: hourglass
	4.22 Demo: lanedetect
	4.23 Demo: medicaldetection
	4.24 Demo: medicalsegcell
	4.25 Demo: medicalsegmentation
	4.26 Demo: multitask
	4.27 Demo: multitaskv3
	4.28 Demo: openpose
	4.29 Demo: platedetect
	4.30 Demo: platenum
	4.31 Demo: pmg
	4.32 Demo: pointpainting
	4.33 Demo: pointpillars
	4.34 Demo: pointpillars_nuscenes
	4.35 Demo: polypsegmentation
	4.36 Demo: posedetect
	4.37 Demo: rcan
	4.38 Demo: refinedet
	4.39 Demo: reid
	4.40 Demo: retinaface
	4.41 Demo: RGBD Segmentation
	4.42 Demo: segmentation
	4.43 Demo: solo
	4.44 Demo: ssd
	4.45 Demo: tfssd
	4.46 Demo: ultrafast
	4.47 Demo: yolov2
	4.48 Demo: yolov3
	4.49 Demo: yolov4
	4.50 Demo: yolovx

	5 References

