

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved.

Application Note
http://sp.utia.cz

FP01x8 Accelerator on TE0726-03M

Jiři Kadlec, Zdeněk Pohl, Lukáš Kohout
kadlec@utia.cas.cz xpohl@utia.cas.cz kohoutl@utia.cas.cz

Revision history
Rev. Date Author Description

0 1.12.2019 J. Kadlec Initial publication
1 6.04.2020 J. Kadlec Update
2 7.04.2020 J. Kadlec Fix of typos, Description for SDK use.

mailto:kadlec@utia.cas.cz
mailto:xpohl@utia.cas.cz
mailto:kohoutl@utia.cas.c

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

ii

Table of Contents
1 Evaluation version of 8xSIMD FP01x8 accelerator for ZynqBerry 1

1.1 Confidence test ... 1
1.2 Compilation and debug of projects from source code .. 2
1.3 DEBUG of SW application from Xilinx SDK 2018.2 ... 3
1.4 Compile SW application directly on the ZynqBerry board .. 4
1.5 Precompiled shared libraries with different data mover HW IPs 5
1.6 Qualities, tunable set-points and available design-time and run-time parameters 9
1.7 Design-time support .. 9
1.8 Run-time support .. 9
1.9 Related state of the art ...10
1.10 Commercial Positioning ...10

2 8xSIMD FP01x8 floating point accelerator ..11
3 Arm SW API for Streaming of Data ...14
4 Performance ...14
5 Intellectual Property information ..14
6 License: ..14
7 Conclusion ..15

Reconfiguration by change of firmware .. 15

Reconfiguration by temporary change of firmware .. 16

References ..16
Disclaimer ...17

Table of Figures
Figure 1: ZynqBerry board with evaluation version of FP01x8 accelerator 7
Figure 2: Architecture 8xSIMD FP01x8 accelerator ... 8

Acknowledgement
This work has been partially supported from project FitOptiVis, project number ECSEL
783162 and the corresponding Czech NFA (MSMT) institutional support project 8A18013.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

1/17

1 Evaluation version of 8xSIMD FP01x8 accelerator for ZynqBerry
This application note describes released UTIA support for the evaluation version of 8xSIMD
FP01x8 floating-point, run-time-reconfigurable accelerator for the ZynqBerry board.

ZynqBerry TE0726-03M [1] works with Xilinx XC07010-1C device with the dual core Arm A9
32 bit and relatively small programmable logic area on single 28 nm chip. The ZynqBerry
PCB has RaspberryPi 2 form factor. The ZynqBerry board is designed and manufactured by
the company Trenz Electronic [1].

SW developer can program application without SDSoC 2018.2 compiler license. The
standard g++ compiler and „make“ can be used.

The accelerator and HW data communication is represented for the SW developer as shared
C++ library with simple SW API, identical for several alternative HW data movers.

See next chapters of this application note for overview of internal details of the FP01x8
accelerator and for overview of SW API details and descriptions.

1.1 Confidence test
This is basic confidence test of the evaluation package.

INSTALLATION OF PC TOOLS and DEBIAN OS for ARM A9

• Install Xilinx SDK 2018.2 on Win 10 PC.
• Install Xilinx Lab Tools 2018.2 on Win 10 PC.
• Install Win32DiskImager for writing of image to Micro SD card with speed grade (10).
• Install Putty (for USB based serial console and Ethernet based serial console)
• Unzip disk image (it is cca. 8 GByte) on PC
• For performance reason
• Use Win32DiskImager to write the disk image from PC to the micro SD card.

HW SETUP
• Insert micro SD card to the ZynqBerry board.
• Connect PC and ZynqBerry to Ethernet
• Connect micro USB cable to ZynqBerry and to PC

TEST
• ZynqBerry will start to boot OS
• Open Putty terminal (115200 bps, 8 data bits, stop bit 1, parity none, flow control off)
• Use Putty terminal to login as user: root password: root
• Change directory to /boot
• Export path to the shared library: export LD_DATA_PATH=/boot
• Start application code by typing: fp01x8_v26x1_dma_sw.elf

RESULT
• The application will compute single precision floating point matrix multiplication on

ARM A9 and on the 8xSIMD FP01x8 accelerator.
• The results are compared to be identical and the performance acceleration is

measured. The accelerator is in the range 50x to 60x comparing to the ARM SW. The
acceleration range is high as the ARM is compiled for Debug (SW is compiled with –
O0). In case of compilation with maximal SW acceleration (–O3), the acceleration is
in the range from 5x to 6x.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

2/17

1.2 Compilation and debug of projects from source code
The evaluation package includes four SW projects for Xilinx SDK 2018.2. These projects can
be modified and recompiled for ARM and executed on ZynqBerry with or without debugging
support.

In Xilinx SDK 2018.2, select one of projects
present in the package:

• fp01x8v26x1_dma_sw
• fp01x8v26x1_sg_malloc_sw
• fp01x8v26x1_sw
• fp01x8v26x1_zc_sg_sw

Each project has two configurations:

• Debug for debugging with –O0 flag
• Release for maximal performance with-

O3 flag and without debug symbols
You can modify and compile the SW code.

Each project comes with (.so) library
precompiled for debug (-O0) or for Release (-
O3).

These libraries contain SW representation of the
evaluated accelerator with given type of data
mover HW IPs instantiated in the PL logic of the
device.

Before test on the ZynqBerry board, you have to
write to the on-board FLASH the correct
BOOT.BIN file which includes inside the correct
bitstream with evaluated accelerator and data
mover HW IPs.

It is done by performing two steps. First, copy
the associated BOOT.BIN from (for example)
fp01x8v26x1_dma_sw/Debug/sd_card/BO
OT.BIN to
zynq/prebuilt/boot_images/m/NA/BOOT
.BIN
Second, change directory to
zynq/prebuilt/boot_images/m/NA
and execute in PC terminal the script:
program_flash_binfile.cmd
This script will write the selected BOOT.BIN to
the ZynqBerry board and the board will start to
boot Petalinux kernel and Debian from the micro
SD card with correct bitstream in the PL logic.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

3/17

1.3 DEBUG of SW application from Xilinx SDK 2018.2
The application can be executed or debugged from the SDK 2018.2 For example:

SDK debugger needs environment information about the location of the actual shared library
on the board. For example:

Before start of Debug, copy the shard library from:
fp01x8_v26x1_dma_sw\Debug\sd_card\libfp01x8_v26x1_dma_hw.so
to Debian file system as
/boot/ libfp01x8_v26x1_dma_hw.so

To debug from the Xilinx SDK, the ZynqBerry TCF server has to be accessible from the PC
via Ethernet.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

4/17

1.4 Compile SW application directly on the ZynqBerry board
Xilinx SDK 2018.2 creates make which can be used for compilation of SW application directly
on the board with use of the g++ compiler of the Debian OS.

Do not forget to export shared library by (for example):
export LD_DATA_PATH=/boot
if the current shared library is located in =/boot

You can copy complete SDK 2018.2 project to the Debian file system and compile on board
by copy complete content of:

fp01x8_v26x1_dma_sw\fp01x8_v26x1_dma_sw\Debug\
to Debian file system into directory:
/home/fp01x8_v26x1_dma_sw/fp01x8_v26x1_dma_sw/Debug/

Change directory to:
cd /home/fp01x8_v26x1_dma_sw/fp01x8_v26x1_dma_sw/Debug

and export the path to the Debug version of the shared library by typing in Debian console:
export LD_DATA_PATH=../../Debug/sd_card

In Debian console, clean and then recompile the project by typing:
make clean
make

Finally, execute the re-compiled debug version of the application by typing in Debian
console:
fp01x8_v26x1_dma_sw.elf
You are done.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

5/17

1.5 Precompiled shared libraries with different data mover HW IPs
The PL part of the ZynqBerry board contains one evaluation version of the 8xSIMD run-time
reprogrammable single precision HW accelerator FP01x8. Its functionality, performance and
re-programmability is demonstrated by four SW demos. Each demo performs single
precision floating point matrix-by-matrix multiplication

C[64,64] = A[64,64] * B[64,64]

Table 1: Shared Libraries represent FP01x8 accelerator HW with different HW data movers

Zynq 7000 (ZynqBerry) TE0726

Single 8xSIMD FP01 Accelerator, no div op

libfp01x8_v26x1_dma_hw.so

libfp01x8_v26x1_sg_malloc_hw.so

libfp01x8_v26x1_hw.so

libfp01x8_v26x1_zc_sg_hw.so

The released design time support for the FP01x8 accelerator provides for the SW designer
set of precompiled shared libraries representing the HW platform. See Table 1:

The libraries represent different data movers used for connection of the 8xSIMD run-time
reprogrammable single precision HW accelerator FP01x8 in these HW configurations:

• libfp01x8_v26x1_dma_hw.so is using DMA HW data movers. The HW supported
data transfers require data to be present in “sd_alloc” memory (continuous physical
section reserved in the DDR3). Start of the data transfer is no blocking. The end of
data transfer is tested by pooling. The SW overhead needed to start this data
transfer is larger in comparison to the Zero Copy data mover.

• libfp01x8_v26x1_sg_malloc_hw.so is using DMA SG data mover. Data can be
allocated in the standard Linux user-space memory, allocated by the standard Linux
“malloc” function. Only this SG data mover is capable to work directly with standard
“malloc” allocated Linux data.

o If “malloc” data allocation is used, the overhead of this SG DMA is really large.
o If “sd_alloc” data allocation is used (continuous physical section reserved in

the DDR3), the overhead of this SG DMA is larger in comparison to DMA
based HW support, but much shorter in comparison to the case of data
allocation based on standard “malloc”.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

6/17

The SG DMA data mover is using the advanced coherent port of the Zynq device.
There is no need to flush the Zynq cache before accessing of data.

• libfp01x8_v26x1_hw.so is using Zero Copy HW data movers. It is not using the

DMA IP cores. The data movers are realized as C++ function compiled to HW by the
SDSoC 2018.2 compiler. The HW supported data transfer requires data to be present
in “sd_alloc” memory (continuous physical section reserved in the DDR3). Start of the
data transfer is no blocking. The end of data transfer is tested by pooling. The SW
overhead needed to start this data transfer is minimal.

• libfp01x8_v26x1_zc_sg _hw.so is using combination of Zero Copy HW data mover
and DMA SG HW data mover with interrupt. The HW supported data have to be
allocated by “sd_alloc” memory (continuous physical section reserved in the DDR3).
Start of the data transfer is no blocking. The end of data transfer is tested by
interrupts. The SW overhead needed to start this data transfer is larger in
comparison to the DMA data mover.

Table 2: HW resources used by the FP01x8 Accelerator with different HW data movers

Device: 7z010clg225-1 lut reg bram dsp
Available (100%) 12462 15376 60 80
One FP01X8_v26_40 Accelerator

 fp03x8_v26x2_dma_hw 70,81% 43,68% 69,17% 40,00%
fp03x8_v26x2_sg_malloc_hw 84,39% 55,68% 77,50% 40,00%
fp03x8_v26x2_hw 66,19% 39,06% 63,33% 40,00%
fp03x8_v26x2_zc_sg_hw 82,55% 53,89% 75,00% 40,00%

.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

7/17

Figure 1: ZynqBerry board with evaluation version of FP01x8 accelerator

Input:
• Program firmware data received via AXI stream interface from Arm processor.
• Configuration Write registers for scalar control received via AXI-lite interface from Arm

processor.
• Floating point single precision data received via AXI stream interface from Arm

processor.

Output:

• Registers indicating end of program accessible to Arm processor via AXI-lite.
• Floating point single precision result data accessible via AXI stream interface for the

Arm processor.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

8/17

Connectivity:
• AXI stream input with input FIFO 2048x32 and support for the AXI stream side

channel indicating the last transferred word sent to the component via the DMA
transaction from Arm processor.

• AXI stream output with output FIFO 2048x32 bit with support for the output side
channel indicating the last transferred word sent from the component via the DMA to
Arm processor.

• AXI-lite input/output configuration registers.

Target:

• Zynq devices with PL part and processor on single chip.

Figure 2: Architecture 8xSIMD FP01x8 accelerator

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

9/17

1.6 Qualities, tunable set-points and available design-time and run-time
parameters
Design time configurable set of SP FP data-flow operations driven by predefined state
machines. Some examples are:

• 8xSIMD SP FP Vector ADD or SUB or MUL or DIV operations
• 8xSIMD SP FP MAC (chained multiply and add operation)
• 8xSIMD SP FP vector by vector dot product operation.

Firmware for the component is defined in the runtime in ARM processor. User defines
sequence of available SP FP data-flow operations to achieve its goal. Some examples are:

• SP FP matrix multiplication can be implemented by several firmware programs, which
can be loaded in the runtime to the component. Programs can be optimized to the
matrix sizes to get best performance in terms of MFLOPS for the currently processed
matrices. Program can be composed from 8xSIMD SP FP MAC (chained multiply-add
operation) or program can utilize the 8xSIMD SP FP vector by vector dot product
operation.

• In case of component without Vector by vector support and without the MAC
operation, (such component has significantly reduced requirements for FPGA logic),
the 8xSIMD SP FP Vector ADD and MUL operations can be used to perform the
matrix multiplication, with reduced performance.

1.7 Design-time support
• UTIA DTRiMC tool serves for automatic generation of DMA data movers for the
component for Arm A9 SoC systems. The tool is developed in FitOptiVis project. The tool
requires usage of the commercial Xilinx SDSoC 2018.2 compiler.It also requires access to
the evaluation version of the 8xSIMD HW accelerator FP01x8 for Xilinx XC0710-1C device.
• UTIA DTRC tool serves for automated generation of the Petalinux 2018.2 kernel,
configuration of the Debian 9.8 “Stretch” OS with support for the Xilinx SDSoC 2018.2
compiler. The tool was developed in FitOptiVis project. See [2]:
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0726-SDSoC-2018_2

1.8 Run-time support
This application note and evaluation package describes API supporting Arm A9 SoC systems
running Xilinx Petalinux 2018.2 kernel with Debian 9.8 “Stretch” OS. Types of functions:

● API functions for download of firmware programs to the FP01x8 accelerator
● API functions for DMA of SP FP data to/from the FP01x8 accelerator.
● API functions use one of supported HW data movers generated by the Xilinx SDSoC

2018.2 compiler:
o DMA HW (Arm processor API is waiting for the end of DMA by pooling)
o SG DMA HW interrupt based API.
o Zero Copy. It is using data mover generated by the Xilinx HLS 2018.2

compiler. (Arm processor API is waiting for the end of transfer by pooling)

● API functions for work with multiple clock counters. Functions measure ARM clock
cycles (clock run at 650 MHz). An actual count of clock cycles or an average count of
clock cycles can be measured.

● API functions for memory management

http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0726-SDSoC-2018_2

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

10/17

1.9 Related state of the art
The accelerators can be compared with these alternative solutions:
• EDKDSP family of accelerators developed by UTIA in frame of ECSEL projects Almarvi

and EMC2.
(+) The EDKDSP accelerators where limited to Artix, Kintex and Zynq
 7000 family of devices, due to the used design flow. Design flow selected for
 the 8xSIMD accelerators can target also the 16nm Zynq Ultrascale+ devices.
(+) The EDKDSP accelerators have used for data communication with
 Arm DDR memory the Xilinx MicroBlaze soft-core with data and instruction
 cache. The data transfer was slow and this have often negatively impacted the
 acceleration results and the scalability (number of instantiated EDKDSP
 8xSIMD accelerators managed by the same MicroBlaze soft-core). These
 limitations of EDKDSP accelerators are solved in released 8xSIMD
 accelerators by the data streaming interface and the auto-generated HW data
 movers.
(-) The automated generation of HW data-movers for 8xSIMD accelerators
 requires in design time the Xilinx SDSoC 2018.2 compiler license.
(+) User of 8xSIMD accelerators compiles the C++ top level of the application in
 standard g++ compiler and does not need the Xilinx SDSoC 2018.2 compiler
 license for compilation, or for execution of the compiled code.

• TTA-based Co-Design Environment (TCE) is an open application-specific instruction-set
toolset.
(-) TCE based processors have much stronger support for optimized C compiler.
(-) TCE based processors have OpenCL API implemented in the pocl framework,
 and this is not supported at this stage by the released 8xSIMD accelerators.
(+) 8xSIMD accelerators support fast streaming data interfaces to arm A9 or A53
 processors which are not supported at present by TCE based processors.
(+) 8xSIMD accelerators support overlapped (parallel) streaming data transfer with
 computation on the accelerator
(+) 8xSIMD accelerators are supported by the auto-generated HW data movers
 supporting HW ZeroCopy, DMA and SG DMA with interrupt based
 data transfer infrastructure compatible with Debian OS common simple API.
(+) 8xSIMD accelerators firmware can be defined and compiled in runtime SW
 app with compilation by “make” and g++ compiler directly on the target
 embedded device (ZynqBerry or Zynq MPSoC – UltraScale module TE0820).

1.10 Commercial Positioning

The commercial version of accelerators is available starting from 1.4.2020. UTIA will offer
this license on commercial base. Contract has to be signed with UTIA.

For information about details of the commercial license write to Jiri Kadlec
kadlec@utia.cas.cz.

mailto:kadlec@utia.cas.cz

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

11/17

2 8xSIMD FP01x8 floating point accelerator
The FP01x8 HW accelerator serves for run-time reprogrammable 8xSIMD single precision
floating point computation. Versions of accelerators:

• FP01x8_capabilities capabilities = 10, 20, 30 or 40

Table 3: Floating point functions present in all accelerators {10 or 20 or 30 or 40}.

Table 4: Floating point functions in accelerators with the capabilities {10, 20, 30, 40}.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

12/17

The FP01x8 accelerator does not support the pipelined, floating-point, vector division.

Table 5: Structure of the 128 bit wide VLIW program instruction.

Accelerator Interfaces

 Type of interface Device Clock
• Data streaming I/O: AXI-S 32 bit Zynq 115 MHz
• Computation: 8xSIMD FP32 Zynq 115 MHz
• Firmware program VLIW 128 bit Zynq 115 MHz
• Configuration I/O: AXI-lite 32 bit Zynq 100 MHz

Design-time support

We provide automated generation of data streaming HW (data movers):
• Zero Copy HW data mover without DMA unit
• DMA HW data mover with DMA unit
• SG DMA HW data mover with interrupts

This design time support is based on the Xilinx SDSoC 2018.2 system level compiler.

Run-time support

• Firmware is re-programmable in run-time by data streaming.
• Computation & data streaming can be performed in parallel.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

13/17

AXI-lite Registers Controlled by Arm app.

reset 1 bit: “1” Reset AXI lite Registers; “0” NOP
we 16 bit: Write from stream to blocks 0 .. 13
baddr 10 bit: Stream will rd/wr from addr=baddr
bram 5 bit: Read from Block 0 .. 13 to stream
paddr 9 bit: Program start address
pstep 9 bit: Program stop address
go 1 bit: “1” go from paddr to pstep; “0” NOP
hi 12 bit: SubBank prog. mod: 00zz00bb00aa (bits)
done 8 bit: Read only. “0” => Instruction runs
pdone 1 bit: Read only. “0” => Program runs

Memory of the Accelerator

• 12 dual-ported 1024x64 bit BRAMs Blocks (0 .. 11) are used as:

o 24 Data RAM 1024x32 bit A1..A8, B1..B8 and Z1..Z8.
• 2 dual-ported 512x64 bit BRAMs Blocks (12, 13) are used as

o Program RAM 512x32 bit P1..P3

Table 6: Internal block rams of accelerators.

Stream Data from/to ARM DDR memory

• Maximal data streaming block is 2048 x 32 bit
• Data streaming block can have variable size: Min 2 x 32bit; Max 2048 x 32 bit
• Mode of operation (same for Data/Program):
• Write to a block defined by we from address baddr
• Broadcast Write by more bits in we (from baddr)
• Read from block bram from address baddr
• Write or Broadcast Write and Read in parallel
• Send-through the Accelerator we = 0; bram =16;

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

14/17

3 Arm SW API for Streaming of Data

Calls are unblocking, trigger HW threads.
HW threads synchronize with SW in blocking sds_wait()
Calls are similar to the pthread barrier().
len = number of 32 bit words in the stream.

Serial Streaming SW API

API for single accelerator and for single serial chain of multiple chained accelerators:

void data2hw_wrapper(unsigned *src, unsigned len); //1
void capture_wrapper(unsigned *storage, unsigned len); //2

Example:
data2hw_wrapper((unsigned*)src_P1_P2, len); //1
capture_wrapper((unsigned*)dest_P1_P2, len); //2
…
sds_wait(1);
sds_wait(2);

4 Performance
Acceleration of single precision floating point Matrix by Matrix multiplication has been
prepared as an application example to evaluate the performance of released evaluation
versions of accelerators. It performs: C[64,64] = A[64,64] * B[64,64].

A single instance of FP01x8 accelerator on ZynqBerry board accelerates the A9 processor
(with 650 MHz clock) computation of this single precision floating point Matrix by Matrix
multiplication by factor from 5x to 6x.

5 Intellectual Property information
This evaluation package includes one evaluation version of accelerator:

• FP01x8_capabilities; capabilities = 40

6 License:
The license for the evaluation versions of accelerators enables execution of certain large
number of floating point operations before it expires. If this happens, the board has to be
switched off and switched on again to restart the evaluation license again.

Starting from 20.4.2020, the evaluation versions of accelerators can be publicly downloaded
for free from UTIA www page [2]: http://sp.utia.cz/index.php?ids=projects/fitoptivis

The commercial version of accelerators is available starting from 20.4.2020. UTIA will offer
this license on commercial base. Contract has to be signed with UTIA.
For information about details of the commercial license write to Jiri Kadlec
kadlec@utia.cas.cz.

http://sp.utia.cz/index.php?ids=projects/fitoptivis
mailto:kadlec@utia.cas.cz

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

15/17

7 Conclusion
The run-time reconfigurable floating point accelerators for the Zynq platforms have been
designed and realized with respect to the following considerations and requirements:

1. Software utilizing the accelerator can be developed also directly on the board, using
the C++ compiler (g++) present in the Debian OS and Xilinx data-mover support
drivers.

2. The entire HW platform with one evaluation version of accelerator, is provided in form
of a shared library. The provided library API is compatible with C++ development
practice and standard “make” can be used to build the user application.

3. The hardware of the floating point accelerators is fixed. Reconfiguration is performed
by reprogramming the firmware code which defines the function of the programmable
finite state machine (FSM) inside the accelerator and the function of the
communication logic.

4. Data communication is implemented as an AXI-stream and supports accelerator
chaining.

5. The data communication support HW is determined at design time and cannot be
changed at runtime. The following variants can be generated:

a. Zero copy (ZC) HW data movers consuming minimal HW resources,
b. DMA data HW data movers,
c. Scatter gather (SG) DMA data movers with interrupts,
d. Combination of ZC HW (DDR to Accelerator) and SG DMA HW (Accelerator

to DDR)
6. All communication alternatives have to work with identical SW API. It means that the

user SW code remains identical and does not need modifications at run-time.
7. Software must be able to query the list of SIMD FP operations supported by the

accelerator. Based on this information, the software can be reconfigured to take
advantage of supported operations.

8. The accelerator must be able to provide information on whether the HW license
coming with the accelerator is valid.

9. The accelerator firmware is a simple sequence of VLIW vector instructions which
support for-loops, if-else, and similar constructs. However, there is no support for
checking overflow/underflow in floating point operations. Such constructs have to be
implemented in the host code (executing on ARM core).

10. Computation performed in the accelerator can overlap with stream-based data
communication. This is controlled by the user-space host software running on the
ARM core.

11. Data are stored in 64bit-wide dual-ported blocks. This arrangement enables to use
the Ultra RAM blocks (4096x64b) present in some larger Zynq UltraScale+ devices
without affecting the accelerator library API or user code.

Reconfiguration by change of firmware

The accelerator executes sequences of VLIW vector instructions (firmware) stored in
accelerator program memory. This firmware can be first defined in the host software and
then downloaded via the streaming interface to the accelerator. The program memory will
usually contain multiple different sequences of VLIW instructions.

Computation performed in the accelerator can overlap with stream-based data
communication. This is controlled by the host software running on the ARM core and it can
be used for run-time reconfiguration by loading a new VLIW instruction sequence to the
accelerator program memory while computation is in progress.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

16/17

For example, consider an application which needs to perform accelerated multiplication of
64x64 matrices (Z[64,64] = A[64,64] × B[64,64]). The application running on the host will split
the matrix operation into shorter sequences of VLIW instructions and loaded instruction
sequences into the accelerator program memory schedule scheduled by the application
software running on the ARM host by adjusting pointers to instruction sequences to be
loaded into the accelerator program memory while streaming parts of matrix B[64,64] from
host DDR memory to the accelerator. Rows of the matrix are propagated as identical to all
8xSIMD memories in 8 subsequent stages.

Reconfiguration by temporary change of firmware

Application software can temporarily reconfigure the accelerator in the following steps:

1. Save data and firmware from accelerator to DDR,
2. Change firmware and upload it to the accelerator,
3. Execute the firmware (for example the SupOp instruction)
4. Read the results from accelerator data memory into ARM host memory,
5. Restore data and firmware from DDR.

After performing the above steps, the accelerator data and firmware is back in its original
state and the application software running on the ARM host has information about the
supported SIMD operations as well as about the status of the HW license.

Consider a scenario in which the application software needs to find out which SIMD
operations are actually supported by the accelerator. This information is required to
determine, e.g., which firmware version can be used with the accelerator. If the DotProd
instruction is supported by the accelerator, the accelerated computation of 64x64 matrix
multiplication (Z[64,64] = A[64,64] × B[64,64]) will use the instruction to improve efficiency.

Alternatively, if the DotProd instruction is unsupported, the application software running on
the ARM host can implement an accelerated matrix multiplication using sequences of Mac
(multiply and accumulate) instructions.

If the Mac instruction is also unsupported, the matrix multiplication can be implemented using
Add and Mult instructions. The performance of the matrix multiplication will be reduced by
approximately 50%, but the accelerator will require less HW resources to implement. This
might be necessary for some platform configurations where the programmable logic area is
used by pre-defined HW accelerated video processing.

References
[1]

[2]

Trenz Electronic, "TE0726 TRM," [Online].
https://shop.trenz-electronic.de/en/27229-Bundle-ZynqBerry-512-MByte-DDR3L-and-
SDSoC-Voucher?c=350 .

 http://sp.utia.cz/index.php?ids=projects/fitoptivis

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

17/17

Disclaimer
This disclaimer is not a license and does not grant any rights to the materials distributed
herewith. Except as otherwise provided in a valid license issued to you by UTIA AV CR v.v.i.,
and to the maximum extent permitted by applicable law:
(1) THIS APPLICATION NOTE AND RELATED MATERIALS LISTED IN THIS PACKAGE
CONTENT ARE MADE AVAILABLE "AS IS" AND WITH ALL FAULTS, AND UTIA AV CR
V.V.I. HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED,
OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR
PURPOSE; and
(2) UTIA AV CR v.v.i. shall not be liable (whether in contract or tort, including negligence, or
under any other theory of liability) for any loss or damage of any kind or nature related to,
arising under or in connection with these materials, including for any direct, or any indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill,
or any type of loss or damage suffered as a result of any action brought by a third party)
even if such damage or loss was reasonably foreseeable or UTIA AV CR v.v.i. had been
advised of the possibility of the same.
Critical Applications:
UTIA AV CR v.v.i. products are not designed or intended to be fail-safe, or for use in any
application requiring fail-safe performance, such as life-support or safety devices or systems,
Class III medical devices, nuclear facilities, applications related to the deployment of airbags,
or any other applications that could lead to death, personal injury, or severe property or
environmental damage (individually and collectively, "Critical Applications"). Customer
assumes the sole risk and liability of any use of UTIA AV CR v.v.i. products in Critical
Applications, subject only to applicable laws and regulations governing limitations on product
liability.

	1 Evaluation version of 8xSIMD FP01x8 accelerator for ZynqBerry
	1.1 Confidence test
	1.2 Compilation and debug of projects from source code
	1.3 DEBUG of SW application from Xilinx SDK 2018.2
	1.4 Compile SW application directly on the ZynqBerry board
	1.5 Precompiled shared libraries with different data mover HW IPs
	1.6 Qualities, tunable set-points and available design-time and run-time parameters
	1.7 Design-time support
	1.8 Run-time support
	1.9 Related state of the art
	1.10 Commercial Positioning

	2 8xSIMD FP01x8 floating point accelerator
	3 Arm SW API for Streaming of Data
	4 Performance
	5 Intellectual Property information
	6 License:
	7 Conclusion
	Reconfiguration by change of firmware
	Reconfiguration by temporary change of firmware

	References
	Disclaimer

