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1. Summary 

1.1 Objectives 

This Application Note aims to present set of adaptive recursive least squares system identification algorithms based on the 
Bayesian extensions of real-time adaptive system identification as well as extending the existing recursive least square 
adaptive algorithms for estimation of time varying parameters in the applications of acoustic signal processing. The 
included reference adaptive algorithms are implemented in Matlab 2016b. Algorithms serve as “golden” reference models 
for the embedded implementations on dedicated processors like Arm Cortex A9 and the FPGA programmable logic 
accelerators in devices the Xilinx Zynq. Algorithms are numerically robust. Algorithms are implemented in double precision 
floating point (64b), single precision floating point (32b) and in logarithmic arithmetic with precision 32b and 19bit. All 
algorithms except for lattice filter are implemented both with exponential forgetting and directional forgetting, which use 
more complex computation and allows to “forget” previous information only if incoming data are bringing new information 
with them. In several cases identification process can benefit from this, as it will be shown on examples in the following 
chapters. Lattice filter, however, is performed with exponential forgetting only. 

The Application Note also presents adaptive recursive least squares system identification algorithms taking advantage of 
dynamic normalization of the core of the algorithm into the guarantied range <-1, 1> for all variables. These algorithmic 
cores are suitable for the fixed-point implementation (14b). Naturally, the fixed-point implementation with representation 
of all variables as only 14b fixed-point numbers results in decreasing precision. But it opens possibility of potentially 
ultralow power implementation of recursive RLS on parallel HW accelerators with custom fixed point arithmetic. This is 
crucial for implementing in low power embedded systems. As a result then using these algorithms in fixed-point we plan to 
develop and implement systolic, pipelined SoC IP core in form of HW accelerator in the programmable logic part of the 
Xilinx Zynq device (28nm) and possibly also in the 16nm Zynq UltraScale+ device. 

This application note and the related evaluated package provides reference base for this development. The evaluated 
package requires Win7 (64b) or Win10 (64b) PC.  

Included scripts and precompiled algorithms can be used with Matlab R2016b or higher.  

Alternatively, the package can be also used without Matlab. All scripts are precompiled by the Matlab Compiler (R2016.b) 
as packages supporting installation and standalone execution on Win 7, 64b PC without Matlab.  

1.2 Directory 
Download the package and unzip to separate folder.  Example  
 
C:\VM_07\R2016b\dsp_1_6\ 
 
In this folder, you will find Matlab files executing algorithms and a sub-folder “private” with Matlab mexw64 files with 
precompiled algorithms. 
 
It also comprises sub-folders “test_algorithms” and “test_algorithm_comparison” for installing and using precompiled 
scripts. 
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1.3 Notation 
 
EF   = exponential forgetting 
DF   = directional forgetting 
DP   = double precision 
SP   = single precision 
LNS  = Logarithmic numbering system (32b or 19b) 
INT   = 14b Integer computation of normalised <-1,1> part of identification algorithm. 
NORM  = Normalised <-1,1> part of identification algorithm. 
LAT  = Lattice filter. 
QR  = Information filter with square root operations. 
QRD  = Information filter without square root operations. 
QR_rotations = Information filter with square root operations and orthogonal rotatons in form of (sin, cos). 
QRD_rotations = Information filter without square root operations and orthogonal rotatons in form of (sin, cos). 
Inv_QRD = Inverse update without square root operations. 
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2. Demos 
 

2.1 Demos with persistent excitation 

The present demos describe the performance of FIR filters based on different algorithms in case of persistent excitation. 
For the purpose of simplicity the third order regression model is used; thus, only three parameters are estimated. 
The algorithms are implemented in a way that input and output are always in DP, but inside the algorithms calculation 
can be made in different data formats. The data formats used in the algorithms are double precision (DP) and single 
precision (SP) arithmetic, logarithmic numbering system (32b or 19b) (LNS) and 14b integer arithmetic (INT). The examples 
illustrating estimation of two parameters include the following algorithms: lattice filter, inverse information filters without 
square root operations, information filters with/without square root operations, information filters with/without square 
root operations and orthogonal rotations in form of (sin, cos), normalized information filters with square root operations. 
The algorithms are performed using exponential forgetting (EF) or directional forgetting (DF). 

The name of algorithms downloaded from the web and presented in this Application Note obtains information about the 
order of the model. Also it differentiates whether logarithmic numbering system of 32b or 19b is used. The examples of a 
name structure are 

1. “short_filter_lns19_d1_1_51l” indicates that the third order model and logarithmic numbering system of 19b 
is used. 

2. “long_filter_lns32_d1_1_51l” is for the higher order model (in our case it is the 23rd order model) and logarithmic 
numbering system of 32b. 

If the name does not comprise “_lns32” or ”_lns19”, it means that another data format is used: double precision, single 
precision or 14b integer computation. For example, Matlab file short_filter_d1_1_46.m performs Lattice filter of the third 
order using double precision. For more information refer to Table 1. 

Table 1 lists the algorithms performed in Matlab R2016b. The specification of the model order and logarithmic numbering 
system is omitted here, as the second part of the name is the same for both filters (long and short one) and for both 
logarithmic numbering systems. The name of the algorithms in Table 1 begins with “_” to show, that the first part is 
omitted. 

Table 1: Demos with persistent excitation 

File name Algorithm Data format Forgetting Normalization Bits 
Demos with Exponential Forgetting 
_d1_1_46.m LAT DP EF   
 
_d1_1_51.m Inv_QRD DP EF   
_d1_1_51f.m Inv_QRD SP EF  32bit 
_d1_1_51l.m Inv_QRD LNS EF  32bit/19bit 
 
_d1_1_70.m QRD DP EF   
_d1_1_70f.m QRD SP EF  32bit 
_d1_1_70l.m QRD LNS EF  32bit/19bit 
 
_d1_1_73.m QR DP EF NORM  
_d1_1_73f.m QR SP EF NORM 32bit 
_d1_1_73l.m QR LNS EF NORM 32bit/19bit 
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_d1_1_76.m QRD_rotations DP EF   
_d1_1_76f.m QRD_rotations SP EF  32bit 
_d1_1_76l.m QRD_rotations LNS EF  32bit/19bit 
 
_d1_1_77.m QR_rotations DP EF   
_d1_1_77f.m QR_rotations SP EF  32bit 
_d1_1_77l.m QR_rotations LNS EF  32bit/19bit 
 
_d1_1_83.m QR INT EF NORM 14bit 

Demos with Directional Forgetting 
_d1_2_51.m Inv_QRD DP DF   
_d1_2_51f.m Inv_QRD SP DF  32bit 
_d1_2_51l.m Inv_QRD LNS DF  32bit/19bit 
 
_d1_2_74.m QR DP DF NORM  
_d1_2_74f.m QR SP DF NORM 32bit 
 
_d1_2_75.m QRD DP DF   
_d1_2_75f.m QRD SP DF  32bit 
 
_d1_2_84.m QR INT DF NORM 14bit 

The first algorithm in the table is the lattice algorithm. It belongs to the family of RLS algorithms and is cheap as far as 
computational complexity is concerned. It is based on orthogonal rotations and is suitable for residual extraction problems, 
when there is no need to compute weights. Thus, the back-substitution step is avoided and computation cost is reduced. 
This algorithm proves to be sufficiently stable due to the combination of orthogonal transformations and exponential 
weighting. It is suitable for parallel implementation. Lattice algorithm can be implemented only with exponential weighting. 
The example of lattice algorithm using exponential forgetting and double precision arithmetic is presented in Matlab file 
_d1_1_46.m. 

The RLS algorithms based on so-called inverse QRD updating without square root operations are illustrated in demos 
containing in their name “51”. The motivation to use square-root-free Givens rotations is to prevent computational 
bottleneck caused by square-root computation in hardware implementations. The inverse QRD algorithms prove to be 
numerically stable. Parallel implementation is relatively complex. The demos presented here include inverse QRD 
algorithms both with EF and DF. They use different data format inside the computational process: double precision 
arithmetic, single precision arithmetic and logarithmic numbering system (32b and 19b). For more details, please, see 
_d1_1_51.m in Table 1. 

The demos listed in the table also comprise information filters without square root operations, i.e. QRD algorithms. They 
are based on QRD decomposition of the input matrix to avoid the problem with positive definiteness of the matrix due to 
rounding errors and, thus, to provide a numerically stable solution. The algorithms presented in demos use exponential 
forgetting and different data formats: double precision and signal precision arithmetic, and logarithmic numbering system 
(32b and 19b). See _d1_1_70.m in Table 1. 

Next three algorithms listed in Table 1 are information filters with square root operations obtaining normalized <-1, 1> 
identification part (see _d1_1_73.m). The normalization aims at solving the problem of overflows and instability of the 
standard algorithms. Besides, it also reduces the computational complexity and makes the algorithms cheaper for 
implementation. The examples of normalized QR algorithms also comprise filters both with exponential and directional 
forgetting and those using different data formats: double precision and single precision arithmetic, logarithmic numbering 
system (32b and 19b) and 14b integer computation system (see _d1_1_83.m in Table 1). 

Information filters without square root operations implemented with directional forgetting are also available and presented 
here in double precision arithmetic and single precision arithmetic (see _d1_2_74.m and _d1_2_75.m in Table 1). 
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The algorithms listed as QRD_rotations are information filters implemented without square root operations and orthogonal 
rotations in form of (sin, cos). Not using square root operations and orthogonal rotations makes the algorithms cheaper 
in comparison with other algorithms. The present demos show the performance of these algorithms with exponential 
forgetting and different data format including double and single precision arithmetic and logarithmic numbering system 
(32b and 19b). See _d1_1_76.m in Table 1. 

The algorithms named QR_rotations are alternatively information filters with square root operations and orthogonal 
rotations in form of (sin, cos). They are numerically stable and also computationally cheap. These algorithms 
are implemented with exponential forgetting and again using different data formats: double precision arithmetic, single 
precision arithmetic and logarithmic numbering system (32b and 19b). For more details, please, refer to _d1_1_77.m 
in Table 1. 

Two last interesting cases are presented by information filters implemented with square root operations, but using 14b 
integer computation. Though, the accuracy of the algorithms under consideration is not as high as of others previously 
mentioned; however, they are numerically robust, sufficiently accurate and fast and, what is important, are suitable 
for implementation in embedded systems. These algorithms use normalization of identification part to fit the interval         
<-1, 1>, thus, preventing the overflow problems. The algorithms are presented both with exponential forgetting (see 
_d1_1_83.m in Table 1) and directional forgetting (see _d1_2_84.m in Table 1). 

To discuss the output of the algorithms inverse QRD filter with DP and EF have been used as an example. The filtering 
results can be viewed in Figure 1. 

 

Figure 1: Inverse QRD filter, DP, EF 

The upper magenta curve is an input signal causing persistent excitation of the system. The bottom red curve represents 
filtration error. The interesting is estimation of the parameters, which is shown in the middle part of the graph. Let us 
remind that for the purpose of simplicity the third order regression model is used to show the performance 
of the algorithms; thus, there are three parameters estimated. However, on the graph as an example only two parameters 
are depicted. They are represented by magenta curves in the middle of the graph. Two red curves along the magenta ones 
show the process of estimation, which is sufficiently accurate and imitates the shape of the magenta lines. The results of 
the performance of other algorithms in case of persistently excited system are very similar and are omitted here. For more 
details, please, refer to Matlab files of corresponding algorithm. 
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2.2 Demos with period of ill-defined excitation 

The demos described in this chapter present examples of so-called ill-defined excitation. The first and the last part 
of the input signal are persistently excited. The middle part of the input is generated in the form of a regular sine, so that 
the system is ill-excited. It is supposed that in this part the algorithms would have problems with identification. 
The examples comprise the same algorithms as they have been described in previous chapter, that is: lattice filter, inverse 
QR filters without square root operations, information filters with square root operations, normalized information filters 
with square root operations, information filters with/without square root operations, information filters with/without 
square root operations and orthogonal rotations in form of (sin, cos), normalized information filters with square root 
operations. The algorithms can be implemented with exponential forgetting (EF) or directional forgetting (DF). 
Inside the algorithms there can be used different data formats: double precision (DP) and single precision (SP) arithmetic, 
logarithmic numbering system (32b or 19b) (LNS), 14b integer computation (INT). The end results are in double precision 
arithmetic. Table 2 lists available algorithms. The structure of algorithm name mentioned in previous chapter is valid for 
demos with period of ill-defined excitation as well. 

Table 2: Demos with period of ill-defined excitation 

File name Algorithm Data format Forgetting Normalization Bits 
Demos with Exponential Forgetting 
_d1_3_46.m LAT DP EF   
 
_d1_3_51.m Inv_QRD DP EF   
_d1_3_51f.m Inv_QRD SP EF  32bit 
_d1_3_51l.m Inv_QRD LNS EF  32bit/19bit 
 
_d1_3_70.m QRD DP EF   
_d1_3_70f.m QRD SP EF  32bit 
_d1_3_70l.m QRD LNS EF  32bit/19bit 

 
_d1_3_73.m QR DP EF NORM  
_d1_3_73f.m QR SP EF NORM 32bit 
_d1_3_73l.m QR LNS EF NORM 32bit/19bit 

 
_d1_3_76.m QRD_rotations DP EF   
_d1_3_76f.m QRD_rotations SP EF  32bit 
_d1_3_76l.m QRD_rotations LNS EF  32bit/19bit 

 
_d1_3_77.m QR_rotations DP EF   
_d1_3_77f.m QR_rotations SP EF  32bit 
_d1_3_77l.m QR_rotations LNS EF  32bit/19bit 

 
_d1_3_83.m QR INT EF NORM 14bit 

Demos with Directional Forgetting 
_d1_4_51.m Inv_QRD DP DF   
_d1_4_51f.m Inv_QRD SP DF  32bit 
_d1_4_51l.m Inv_QRD LNS DF  32bit/19bit 

 
_d1_4_74.m QR DP DF NORM  
_d1_4_74f.m QR SP DF NORM 32bit 

 
_d1_4_75.m QRD DP DF   
_d1_4_75f.m QRD SP DF  32bit 
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_d1_4_84.m QR INT DF NORM 14bit 

The outputs of the algorithms are illustrated by the example of inverse QRD using logarithmic numbering system 
(both for 32b and 19b) and normalized QR filter using 14b integer arithmetic, both for EF and DF. 

 

Inverse QRD filter, LNS 32bit, EF 

 

Inverse QRD filter, LNS 32bit, DF 

 
 

Inverse QRD filter, LNS 19bit, EF 

 

 

Inverse QRD filter, LNS 19bit, DF 

 
 

QR filter, INT, EF 

 

 

QR filter, INT, DF 

 

Figure 2: Comparison of outputs from different filters 

The upper magenta curve is an input signal, which is created by a regular sine in its middle part. Due to this sinewave 
the system in this part is ill-excited and the estimation of the parameters is far from accurate. The bottom curve represents 
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filtration errors. Two magenta lines in the middle of the graphs stand for two parameters, which estimation is made 
by the corresponding algorithm. Estimation progress itself is shown by red curves for inverse QR filter examples and cyan 
curves for QR filter examples (two pictures in the bottom). 

In Figure 2 the differences between algorithms using EF can be easily viewed (the left part of the figure). In the middle part 
of the signal the estimation of the parameters is quite a problem for all three algorithms; however, the less accurate is 
QR filter using 14b integer computation. 

The right side of the figure shows the outputs for the same algorithms, but using directional forgetting. It is obvious that 
in case of ill-defined excitation the algorithms with DF perform much better than those with EF. The reason is that when 
the input signal contains less information, then in case of using EF all information is gradually wiped out. The algorithms 
with DF discount old data only when there is actually new information incoming to the model. 

The outputs of other filters look more or less similar and omitted here. For seeing them, please, use a corresponding 
Matlab file. 
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3. Comparison of results 

3.1 Example data 
After running any from discussed algorithms the example data including parameter estimations and filtration errors 
are saved in the form: ‘algorithm_name.dat’. 
 

 

Figure 3: Example data 

The examples of saved data are: 

1. lf_46d.mat – Lattice filter with DP and EF, higher order model 
2. lf_51d.mat – Inverse QRD filter with DP and EF/DF, higher order model 
3. lf_51f.mat – Inverse QRD filter with SP and EF/DF, higher order model 
4. lf_lns32_51l.mat - Inverse QRD filter using LNS 32b and EF/DF, higher order model 
5. lf_lns19_51l.mat – Inverse QRD filter using LNS 19b and EF/DF, higher order model 
6. lf_70d.mat – QRD filter with DP and EF, higher order model 
7. lf_70f.mat – QRD filter with SP and EF, higher order model 
8. lf_lns32_70l.mat – QRD filter using LNS 32b and EF, higher order model 
9. lf_lns19_70l.mat – QRD filter using LNS 19b and EF, higher order model 
10. lf_73d.mat – Normalized QR filter with DP and EF, higher order model 
11. lf_73f.mat – Normalized QR filter with SP and EF, higher order model 
12. lf_lns32_73l.mat – Normalized QR filter using LNS 32b and EF, higher order model 
13. lf_lns19_73l.mat – Normalized QR filter using LNS 19b and EF, higher order model 
14. lf_74d.mat – QR filter with DP and DF, higher order model 
15. lf_74f.mat – QR filter with SP and DF, higher order model 
16. lf_75d.mat – QRD filter with DP and DF, higher order model 
17. lf_75f.mat – QRD filter with SP and DF, higher order model 
18. lf_76d.mat – QRD_rotations filter with DP and EF, higher order model 
19. lf_76f.mat – QRD_rotations filter with SP and EF, higher order model 
20. lf_lns32_76l.mat – QRD_rotations filter using LNS 32b) and EF, higher order model 
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21. lf_lns19_76l.mat – QRD_rotations filter using LNS 19b and EF, higher order model 
22. lf_77d.mat – QR_rotations filter with DP and EF, higher order model 
23. lf_77f.mat – QR_rotations filter with SP and EF, higher order model 
24. lf_lns32_77l.mat – QR_rotations filter using LNS 32b and EF, higher order model 
25. lf_lns19_77l.mat – QR_rotations filter using LNS 19b and EF, higher order model 
26. lf_83i.mat – Normalized QR filter using 14b integer computation and EF, higher order model 
27. lf_84i.mat – Normalized QR filter using 14b integer computation and DF, higher order model 

 
Similar data are saved for the third order model. The only difference is that the name begins with “sf_” instead of “lf_”. 

3.2 Comparison scripts 

This subchapter aims to present Matlab codes, which compare different algorithms to show the differences between them 
as far as parameter estimation, filtration errors and accumulated numerical error are concerned. The file name has 
a structure as in the following example: 

- “short_filter_compare_51_70_73_76_77.m”. 

The first part of the name indicates whether the third order model (“short_filter_”) or the 23rd order model (“long_filter_”) 
is used. The first number in the name stands for the reference algorithm; other four numbers after it are the algorithms 
subject to comparison. Thus, in total four algorithms can be compared with the first reference one. The data used for 
comparison are those saved after running corresponding algorithm and described in previous subchapters. 

If some algorithm uses logarithmic numbering system of 32b or 19b, then it is specified in the name of a file as well: 

- “short_filter_lns32_compare_51_51_51l_51_51f.m” – for 32b logarithmic numbering system, 
- “short_filter_lns19_ compare_51_51_51l_51_51f.m” – for 19b logarithmic numbering system. 

The examples of several comparison scripts are listed below. However, one can create one’s own comparison script on the 
basis of example scripts and data files to compare any desirable algorithms. The first part of the file name in Table 3 is 
omitted, because the second part is the same for both the third order and higher model as well as for 32b and 19b 
logarithmic numbering system. Therefore, it would be pointless to repeat it for each of the variants. 

Table 3: Examples of comparison scripts 

Comparison script 
Algorithms compared 

Reference algorithm Other algorithms 

_compare_51_51_51f_51_51.m Inverse QRD filter with DP, EF/DF Inverse QRD filter with SP, EF/DF 

_compare_51_51_51l_51_51.m Inverse QRD filter with DP, EF/DF Inverse QRD filter with LNS, EF/DF 

_compare_51_51_51l_51_51f.m Inverse QRD filter with DP, EF/DF Inverse QRD filter with SP, EF/DF 
Inverse QRD filter with LNS, EF/DF 

_compare_51_51_51l_51_83i.m Inverse QRD filter with DP, EF/DF 
Inverse QRD filter with LNS, EF/DF 
Normalized QR filter with 14b integer 
computation, EF 

_compare_51_51_70f_51_51f.m Inverse QRD filter with DP, EF/DF Inverse QRD filter with SP, EF/DF 
QRD filter with SP, EF 
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_compare_51_51_70l_51_51l.m Inverse QRD filter with DP, EF/DF Inverse QRD filter with LNS, EF/DF 
QRD filter with LNS, EF 

_compare_51_51_70_51_51.m Inverse QRD filter with DP, EF/DF QRD filter with DP, EF 

_compare_51_51_73_51_51.m Inverse QRD filter with DP, EF/DF Normalized QR filter with DP, EF 

_compare_51_51_74f_51_51.m Inverse QRD filter with DP, EF/DF Normalized QR filter with SP, DF 

_compare_51_51_74f_51_51f.m Inverse QRD filter with DP, EF/DF Inverse QRD filter with SP, EF/DF 
Normalized QR filter with SP, DF 

_compare_51_51_74f_75f_51f.m Inverse QRD filter with DP, EF/DF 
Inverse QRD filter with SP, EF/DF 
Normalized QR filter with SP, DF 
QRD filter with SP, DF 

_compare_51_51_74_51_51.m Inverse QRD filter with DP, EF/DF Normalized QR filter with DP, DF 

_compare_51_51_74_51_75.m Inverse QRD filter with DP, EF/DF Normalized QR filter with DP, DF 
QRD filter with DP, DF 

_compare_51_51_75_51_51.m Inverse QRD filter with DP, EF/DF QRD filter with DP, DF 

_compare_51_51_84_51_51.m Inverse QRD filter with DP, EF/DF Normalized QR filter with 14b integer 
computation, DF 

_compare_51_70f_73f_76f_77f.m Inverse QRD filter with DP, EF/DF 

QRD filter with SP, EF 
Normalized QR filter with SP, EF 
QRD_rotations filter with SP, EF 
QR_rotations filter with SP, EF 

_compare_51_70l_73l_76l_77l.m Inverse QRD filter with DP, EF/DF 

QRD filter with LNS, EF 
Normalized QR filter with LNS, EF 
QRD_rotations filter with LNS, EF 
QR_rotations filter with LNS, EF 

_compare_51_70_73_76_77.m Inverse QRD filter with DP, EF/DF 

QRD filter with DP, EF 
Normalized QR filter with DP, EF 
QRD_rotations filter with DP, EF 
QR_rotations filter with DP, EF 

_compare_51_70_76_70_77.m Inverse QRD filter with DP, EF/DF 
QRD filter with DP, EF 
QRD_rotations filter with DP, EF 
QR_rotations filter with DP, EF 

_compare_70_70_46_70_70.m QRD filter with DP, EF Lattice filter with DP, EF 

_compare_70_70_73f_70_70.m QRD filter with DP, EF Normalized QR filter with SP, EF 

_compare_70_70_73f_70_73l.m QRD filter with DP, EF Normalized QR filter with SP, EF 
Normalized QR filter with LNS, EF 

_compare_70_70_73l_70_70.m QRD filter with DP, EF Normalized QR filter with LNS, EF 
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_compare_70_70_73_70_70.m QRD filter with DP, EF Normalized QR filter with DP, EF 

_compare_70_70_76_70_77.m QRD filter with DP, EF QRD_rotations filter with DP, EF 
QR_rotations filter with DP, EF 

_compare_70_73_76_46_77.m QRD filter with DP, EF 
QRD_rotations filter with DP, EF 
QR_rotations filter with DP, EF 
Lattice filter 

_compare_70_73_76_70_77.m QRD filter with DP, EF 
Normalized QR filter with DP, EF 
QRD_rotations filter with DP, EF 
QR_rotations filter with DP, EF 

According to performed comparison the minimal differences are between algorithms using the same data format. 
The variations for parameter estimation in this case ranges up to 10-16, for filtration errors – up to 10-17 and for accumulated 
numerical error – up to 10-14. This proves, that presented algorithms, including inverse QRD filters, QR filters, normalized 
QR filters, QRD filters, QRD_rotations and QR_rotations filters, when using the same data format, perform almost the same 
results and are equally accurate. The negligible differences between them can be explained by the way they perform 
calculations. 

The following example illustrates comparison results for four algorithms: QRD filter, normalized QR filter, QRD_rotations 
filter and QR_rotations filter, all using EF and DP. The reference algorithm is inverse QRD filter. Matlab file providing 
the outputs is short_filter_compare_51_70_73_76_77.m. 

Estimation of the first parameter 

 

Estimation of the second parameter 

 
 

Filtration errors 

 

 
Accumulated numerical error 

 

Figure 4: Comparison results for QRD filter, normalized QR filter, QRD_rotations filter and QR_rotations filter (EF, DP) 

Red curves on the graphs stand for QRD filter. Green curves present the outputs of normalized QR filter. The results 
of QRD_rotations filter are colored in blue, while QR_rotations filter is represented by magenta curves. 
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Two upper graphs show comparison of parameter estimation by different algorithms, while the bottom left picture 
illustrates filtration errors of the filters compared. The bottom right graph shows how accumulated numerical error 
is growing in respect to the reference algorithm. It can be seen that the differences are really very small and the algorithms 
function equally well. 

However, the variations in obtained results for the algorithms using data formats and arithmetic with lower precision are 
already greater and ranges from 10-7 to 10-8 for parameter estimation, up to 10-8 for filtration errors and from 10-5 to 10-6 
for accumulated numerical error. 

The example below illustrates comparison results of Matlab file short_filter_compare_51_51_70f_51_51f.m, which 
compares inverse QRD filter with SP and QRD filter with SP with inverse QRD filter with DP as a reference filter. 

 

Estimation of the first parameter 

 

Estimation of the second parameter 

 
 

Filtration errors 

 

 
Accumulated numerical error 

 

Figure 5: Comparison results for inverse QRD filter with SP and QRD filter with SP 

Here the differences in parameter estimation and filtration errors are in the range of 10-8, while accumulated numerical 
error is in the range of 10-6. 

Blue lines on the graph stand for the reference algorithm, i.e. inverse QRD filter with DP. The outputs for QRD filter with SP 
are colored in green, while the ones for inverse QRD filter with SP are colored in magenta. Though the variations are greater 
than in the previous examples, they are not so high and the accuracy of the algorithms can be considered to be very similar. 

To show the differences in results obtained by the algorithms using single precision arithmetic and logarithmic numbering 
system Matlab script short_filter_lns32_compare_51_51_51f_51_51l.m is created. Here the reference algorithm is inverse 
QRD filter with DP. The performance of two other algorithms, i.e. inverse QRD with SP and inverse QRD with LNS (32b), is 
compared with the reference filter. The results are seen in Figure 6. 
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Estimation of the first parameter 

 

Estimation of the second parameter 

 
 

Filtration errors 

 

 

Accumulated numerical error 

 

Figure 6: Comparison results for inverse QRD with SP and inverse QRD with LNS 

The reference algorithm is presented with blue lines on the graphs. Inverse QRD with SP gives the outputs colored in 
magenta, while the results of inverse QRD with LNS are shown in green. The differences in parameter estimation and 
filtration errors from the reference algorithm are in the range of 10-8. The variations in accumulated numerical error 
are also small and are not greater than 10-6. These differences are explained by the method of computation the algorithm 
use to obtain the results. Moreover, it can be seen, that the accumulated numerical error for inverse QRD with LNS (32b) 
is a little b greater than for inverse QRD with SP. But the difference is really not so high. 

The next graph shows the differences in estimation of the first parameter in the range of 10-7, the differences in estimation 
of the second parameter and in filtration errors in the range of 10-8 and the differences in accumulated numerical error 
in the range of 10-6. The algorithms compared are inverse QRD filter with DP, QRD filter with SP, normalized QR filter with 
SP, QRD_rotations filter with SP and QR_rotations filter with SP. Matlab code used for these purposes 
is short_filter_compare_51_70f_73f_76f_77f.m. 
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Estimation of the first parameter 

 

Estimation of the second parameter 

 
 

Filtration errors 

 

 
Accumulated numerical error 

 

Figure 7: Comparison results for QRD filter with SP, normalized QR filter with SP, QRD_rotations filter with SP and 
QR_rotations filter with SP 

The outputs of QRD filter with SP are in red, while the results of normalized QR filter with SP are in green. Blue curves 
present QRD_rotations filter with SP and magenta curves stand for QR_rotations filter with SP. 

To compare the same algorithm as in the previous example, but using LNS (32b) Matlab file 
short_filter_lns32_compare_51_70l_73l_76l_77l.m is created. Here red curves stand for the outputs of QRD filter with LNS 
(32b), while green ones are applied for normalized QR filter with LNS (32b). The results of QRD_rotations filter with LNS 
(32b) are colored in blue and those of QR_rotaions filter are presented in magenta. 

The ranges of the differences from the reference algorithms in parameter estimation, filtration errors and accumulated 
numerical error are almost the same as in previous example and as follows: 

- up to 10-8 for parameter estimation and filtration errors, 
- up to 10-5 for accumulated numerical error. 

It should be noted also, that the red curves of QRD filter are hidden under the blue curves of QRD_rotations filter, because 
the results of these two algorithms in this case are very similar. 
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Estimation of the first parameter 

 

Estimation of the second parameter 

 
 

Filtration errors 

 

 

Accumulated numerical error 

 

Figure 8: Comparison results for QRD filter, normalized QR filter, QRD_rotations filter and QR_rotations filter, 
all with LNS (32b) 

However, if 19b logarithmic numerical system is used, the results are much less precise, as it can be seen in the example of 
short_filter_lns19_compare_51_70l_73l_76l_77l.m. 

The algorithms compared with the reference algorithm (inverse QRD with DP) are the following: 

  QRD filter with LNS (19b), colored in red, 
 normalized QR filter with LNS (19b), colored in green, 
 QRD_rotations filter with LNS (19b), colored in blue, 
 QR_rotations filter with LNS (19b), colored in magenta. 

 

 

 

 

 



 

 
 
 
 

© 2017 ÚTIA AV ČR, v.v.i. 
All disclosure and/or reproduction rights reserved 

20/39 
http://zs.utia.cas.cz 

 

 

Estimation of the firest parameter 

 

Estimation of the second parameter 

 
 

Filtration errors 

 

 

Accumulated numerical error 

 

Figure 9: Comparison results for QRD filter, normalized QR filter, QRD_rotations filter and QR_rotations filter, 
all with LNS (19b) 

The differences of above mentioned algorithms with the reference one are: 

 up to 10-4 for estimation of the first parameter and filtration errors, 
 up to 10-3 for estimation of the second parameter, 
 up to 10-1 for accumulated numerical error. 

Nevertheless, the worst results are obtained when comparing normalized QR algorithm with 14b integer computation 
with the reference filter using DP. The differences in parameter estimation are in the range of 10-4, the differences 
in filtration errors are up to 10-5 and the differences in accumulated numerical error are not greater  than 10-2. Though 
the variations are higher than in other cases, however, the accuracy is sufficient. Besides, the algorithms using 14b integer 
computation are cheaper and result in lower power consumption. Matlab script 
short_filter_lns32_compare_51_51_51l_51_83i.m provides comparison of inverse QRD filter with LNS and normalized QR 
filter with 14b integer computation with the reference algorithm, i.e. inverse QRD filter with DP. 
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Estimation of the first parameter 

 

Estimation of the second parameter 

 
 

Filtration errors 

 

 
Accumulated numerical error 

 
Figure 10: Comparison results for inverse QRD filter with LNS (32b) and normalized QR filter with 14b integer 

computation 

The reference algorithm is presented by blue lines on the graphs. Magenta curves illustrate the outputs of normalized 
QR filter using 14b integer computation. Green curves should provide the outputs for inverse QRD filter with LNS; however, 
they are not seen on the graphs, because the difference between this algorithm and the reference one is much smaller, 
than the difference between normalized QR filter with 14b integer computation and the reference filter. 

The same example, but with 19b logarithmic numbering system, is presented by Matlab file 
short_filter_lns19_compare_51_51_51l_51_83i.m. Here again two algorithms are compared with the reference inverse 
QRD filter with DP. These two algorithms are: 

- inverse QRD filter with LNS (19b), in green, 
- QR filter using 14b integer computation, in magenta. 
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Estimation of the first parameter 

 

Estimation of the second parameter 

 
 

Filtration errors 

 

 

Accumulated numerical error 

 
Figure 11: Comparison results for inverse QRD filter with LNS (19b) and normalized QR filter with 14b integer 

computation 

The differences from the reference algorithm in the obtained results are the following: 

- up to 10-4 for parameter estimation and filtration errors, 
- up to 10-2 for accumulated numerical error. 

Because precision of 19b logarithmic numbering system is smaller than in the previous example and more or less similar 
with the one for QR filter with 14b integer computation, the green curves are not hidden under magenta curves as it was in 
the previous case (compare Figure 10 and Figure 11). 

The last example shows comparison results of QRD filter with DP and lattice filter. Matlab file performing the comparison 
is short_filter_compare_70_70_46_70_70.m. 

The reference algorithm, that is QRD filter with DP, is presented by magenta lines, while green curves show the outputs 
of lattice filter. The differences can be explained mainly by the initial conditions two algorithms have in the beginning 
of estimation and by different methods the estimation itself is performed. Thus, on the right graph in the bottom it is 
clearly seen, that accumulated numerical error is rapidly growing only in the beginning of estimation process. It is fast 
converging to the right results (see the left graph in the bottom) and becomes constant. 
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Estimation of the first parameter 

 

Estimation of the second parameter 

 
 

Filtration errors 

 

 
Accumulated numerical error 

 

Figure 12: Comparison results for QRD filter with DP and lattice filter 

For more details, please, refer to corresponding Matlab scripts. 

3.3 Using higher order regression model 

The previous subchapters describe the examples of different algorithms, based on the third order regression model; 
thus, only three parameters have been estimated. In real situations the order of the model is much higher and the 
algorithms have to be able to estimate a score of the parameters correctly. To prove that proposed algorithms also function 
sufficiently accurately and are robust when using a regression model of higher order; several examples with the 23rd order 
regression model are presented in this subchapter. The parameters added to create the 23rd order regression model are set 
to be zeros, but all of them are evaluated during estimation process, though not depicted on the graph. 

All algorithms listed in Table 1 and Table 2 have been tested using the 23rd order regression model. The filtering results 
of several algorithms are illustrated here. 

The first example gives overlook, how estimation process is performed when using inverse QRD filter with double precision 
arithmetic both with EF and DF. Figure 13 shows the outputs for the case of persistent excitation as well as ill-defined 
excitation (refer to long_filter_d1_1_51.m, long_filter_d1_2_51.m, long_filter_d1_3_51.m and long_filter_d1_4_51.m). 
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Persistent excitation 

 

Inverse QRD filter, DP, EF 

 

Inverse QRD filter, DP, DF 
 

Ill-defined excitation 

 

Inverse QRD filter, DP, EF 

 

Inverse QRD filter, DP, DF 

Figure 13: Inverse QRD filter with DP and EF/DF in case of persistent excitation resp. ill-defined excitation 

From the graphs it is obvious, that the algorithms function well when a regression model with higher order is concerned. 
Estimation of only two parameters is depicted on the graph to make it more comprehensible. The upper left graph shows 
the outputs of inverse QRD filter with DP and EF. The estimation process is very similar to that for the third order regression 
model. However, it should be noted, that filtration errors are a little b put down by the higher order of the model and its 
zero parameters. 

Parameter estimation in case of DF and persistent excitation (see the upper right graph) is converging slower to the right 
values of the parameters, but the shape of the estimation curve is smooth. The filtration errors are higher there 
than in the case of EF. 

Two graphs in the bottom part of Figure 13 illustrate the case of ill-defined excitation. Inverse QRD filter with DP and EF has 
a problem to estimate parameters in the area of ill-excited signal. Therefore, parameter estimation in this part 
is so scattered. However, if we look at the results of inverse QRD filter with DF, it is obvious that it performs extremely well 
in this case and its estimation is very similar to that when the signal was persistently excited (the upper right graph). 

Very similar results are obtained while evaluating algorithms working with single precision arithmetic and logarithmic 
numbering system (32b). The following example depicts the filtering process for normalized QR algorithms with LNS (32b). 
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Normalized QR with 32b LNS, EF, persistent excitation 

 

Normalized QR with 32b LNS, EF, ill-defined excitation 

Figure 14: Normalized QR algorithm with 32b LNS 

The algorithms using 19b logarithmic numbering system naturally give less precise results, particularly when ill-excited 
signal is concerned. Figure 15 and Figure 16 illustrate examples of filtering results for inverse QRD filter and normalized 
QR filter with 19b LNS. The estimation as in previous examples in this subchapter is performed using the 23rd order 
regression model. 

Persistent excitation 

 

Inverse QRD filter with 19b LNS, EF 

 

 

Inverse QRD filter with 19b LNS, DF 

 
Ill-defined exitation 

 

Inverse QRD filter with 19b LNS, EF 

 

Inverse QRD filter with 19b LNS, DF 

Figure 15: Inverse QRD filter using 19b LNS 
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Normalized QR filter with 19b LNS, EF, persistent 
excitation 

 

Normalized QR filter with 19b LNS, EF, ill-defined   
excitation 

Figure 16: Normalized QR filter with 19b LNS 

From Figure 16 (the right graph) it is obvious that algorithm has problems when the input signal is ill-excited. However, 
the positive definiteness of the matrix is preserved and, when the signal is again persistently excited, the algorithm begins 
functioning correctly. 

The least precise results are obtained for normalized QR algorithms working with 14b integer computation (see Figure 17). 
From the bottom left picture it is seen, that in the case of ill-defined excitation the parameter estimation is scattered 
and gives good results only when the signal is persistently excited again. It is valid for the algorithm using EF. 
On the other hand, DF can be a benefit for estimation process, allowing to perform estimation more precisely (see the right 
bottom graph). 

Persistent excitation 

 

Normalized QR filter, 14b integer computation, EF 

 

 

Normalized QR filter, 14b integer computation, DF 

 
Ill-defined excitation 

 

Normalized QR filter, 14b integer computation, EF 

 

Normalized QR filter, 14b integer computation, DF 

Figure 17: Normalized QR filter in fixed point representation 
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All examples described in this subchapter as well as in the previous subchapters have supposed stationary noise. In real life 
the noise should not be always time-invariant and often is not. Thus, the algorithms have to be able to function sufficiently 
precisely in case of non-stationary noise as well. The following example presents the outputs of inverse QRD filter with DP 
and EF/DF (both for persistently excited signal and ill-defined excitation), when some time-varying, i.e. non-stationary, 
noise is added to the signal (see Figure 18). 

Persistent excitation 

 

Inverse QRD filter, DP, EF 

 

 

Inverse QRD filter, DP, DF 

 
Ill-defined excitation 

 

Inverse QRD filter, DP, EF 

 

Inverse QRD filter, DP, DF 

Figure 18: Inverse QRD filter performance in case of non-stationary noise 

From the graphs above it is obvious, that the algorithms also manage to perform estimation in case of non-stationary noise. 
It should be noted again that the algorithms with DF give a little b better results in comparison with the same algorithms 
with EF. 

To conclude, the described examples prove that proposed algorithms are also numerically robust and sufficiently precise 
when a regression model of higher order is used. Besides, they prove to function when non-stationary noise enters 
the system. Thus, they are reliable to be implemented in real-life applications. 

As far as comparison of performance of different algorithms for the 23rd order regression model is concerned, it is omitted 
here, because the obtained results while comparing different algorithms are very similar to those presented and described 
in Subchapter 1.7. 
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4. Applications for Evaluation 

4.1 Compiled scripts 

The algorithms described in previous subchapters are created in Matlab 2016b and are available in two forms: 

- as .m files with .mexw64 (Matlab 2016b or higher has to be installed to use the files), 
- as  application with installation package for Win7 64b or Win10 64bit. (Matlab is not necessary to be installed on 

the computer in this case). 

This subchapter describes the way .exe applications can be used on Win7 64b PC. 

There are two .exe applications available: 

- test_algorithms.exe showing the performance of the algorithms as it has been described in Chapters 1.4, 1.5 
and 1.8, 

- test_algorithm_comparison.exe consisting of examples described in Chapter 1.7. 

In a folder downloaded from web there are test_algorithms and test_algorithm_comparison subfolders, which obtain .exe 
applications. 

To be able to run .exe applications compiled in Matlab you need first to install MATLAB Runtime.  

If you do not have MATLAB Runtime, in directory test_algorithms -> for_redistribution click on MyAppInstaller_mcr. 
A window will appear: 

 

Figure 19: Installation of .exe application 

Click Next and choose installation folder, where you want to install the application. 
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Figure 20: Installation options 

Click Next again and choose installation folder for MATLAB Runtime. 

 

Figure 21: MATLAB Runtime installation 

Click Next. 

The License Agreement will appear. Read it carefully, click Yes, if you accept the terms of the license agreement, and press 
Next. 
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Figure 22: License Agreement 

The confirmation window will appear. 

 

Figure 23: Confirmation window 

Click Install. 

 

Figure 24: Installation progress 
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After installation being completed press Finish. 

 

Figure 25: Installation completed 

Now you can use test_algorithm.exe to see the performance of algorithms. 

After clicking on test_algorithms.exe a window appears: 

 

Figure 26: Application test_algorithms.exe 

On the left side there are a number of options you can choose. The steps are the following: 

1. Select between the third and higher order of the model used in the algorithms. 
2. Select whether you want a persistently excited system or a system with a period of ill-defined excitation. 



 

 
 
 
 

© 2017 ÚTIA AV ČR, v.v.i. 
All disclosure and/or reproduction rights reserved 

32/39 
http://zs.utia.cas.cz 

3. Select a type of forgetting: exponential or directional forgetting. 
4. Select data format. After selecting data format a list of algorithms will appear in a popup menu. 
5. Choose the algorithm you want to execute. 
6. Press Run button. 

It will result in performing the corresponding algorithm and presenting its outputs in a figure in the center of the window. 
The example can be seen from Figure 27. 

 

Figure 27: Example of application performance 

You can then choose another algorithm for seeing the results or close the application by pressing Close button             
or File->Close on a menu bar. 

There is About Application on a menu bar. Clicking on it you can read short information about test_algorithm.exe. 
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Figure 28: Short information about application test_algorithms.exe 

To see the results of comparison of different algorithms you need to run test_algorithm_comparison.exe. 

A window will appear as shown in Figure 29. 

 

Figure 29: Application test_algorithm_comparison.exe 
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There you should: 

1. select the order of the model, 
2. select whether for comparison with other algorithms you would use algorithms with logarithmic numbering 

system (lns32 or lns19) or you would like to compare algorithms using all other data formats except logarithmic 
numbering system. 

After selecting these options the comparison examples popup menu will be available, where you can choose the examples 
of algorithm comparison explained in Chapter 1.7. 

After selecting some comparison example from a popup menu the information about compared algorithms will appear 
below. It obtains information about the reference algorithm and about the algorithms compared with the reference one. 

Pressing Run button the outputs of comparison will appear in the window. 

 

Figure 30: Performance of application for comparing algorithms 

You can choose another example to see the results or close the programme by pressing Close button or File->Close 
on a menu bar. 

Press About Application on a menu bar to see short information about test_algorithm_comparison.exe. 
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Figure 31: Short information about application test_algorithm_comparison 

4.2 Availability and Licensing 
The evaluation package includes .m scripts with DSP algorithms pre-compiled as .mexw64 files for MATLAB R2016.b (or 
higher) and two standalone applications for Win7 64b or Win10 64b (for users without MATLAB).  
 

• These included DSP algorithms pre-compiled as .mexw64 files have no time restriction.  
• The evaluation package can be downloaded and used free of charge. 
• Source code of these DSP algorithms is not provided in this evaluation package. 

4.3 References 
• Systolic arrays for implementation of QR, QRD and inverse QR adaptive RLS filters with exponential forgetting for 

FIR regression models are described in [1]. 
• Directional forgetting concept and implementation for the inverse QR adaptive RLS filter is described in [2]. 
• Bayesian structure estimation is described in [3]. 
• Dynamic normalization of QR, QRD adaptive RLS filters with exponential and directional forgetting and concept of 

fixed-point implementation of filters is described in [4] with concrete applications in [5] and [6]. 
• UTIA EdkDSP reprogrammable floating point HW accelerators are described in [7] and [8].  
• Implementation of logarithmic arithmetic is described in [9] – [17]. 
• UTIA simulation environment based on MATLAB supporting simulation, identification and control of stochastic 

systems modelled by adaptive linear regression filters is described in [18] – [24]. Package described in this 
application note is utilizing from the UTIA packages [18] – [24] these building blocks : 

o Simulation of time variable systems modelled as time variable MIMO linear regression models. 
o Double precision implementation of the Inverse QRD RLS identification algorithm with exponential and 

directional forgetting (md51). 
o Double precision implementation of the QRD RLS identification algorithm with exponential forgetting 

(md70). 
• Applications of UTIA DSP algorithms are described in [25] – [42]. 
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Disclaimer 
 
This disclaimer is not a license and does not grant any rights to the materials distributed herewith. Except as 
otherwise provided in a valid license issued to you by UTIA AV CR v.v.i., and to the maximum extent permitted 
by applicable law:  

 
(1)  THIS APPLICATION NOTE AND RELATED MATERIALS LISTED IN THIS PACKAGE CONTENT ARE MADE 
AVAILABLE "AS IS" AND WITH ALL FAULTS, AND UTIA AV CR V.V.I. HEREBY DISCLAIMS ALL WARRANTIES AND 
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF 
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and  
(2)  UTIA AV CR v.v.i. shall not be liable (whether in contract or tort, including negligence, or under any other 
theory of liability) for any loss or damage of any kind or nature related to, arising under or in connection with 
these materials, including for any direct, or any indirect, special, incidental, or consequential loss or damage 
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought 
by a third party) even if such damage or loss was reasonably foreseeable or UTIA AV CR v.v.i. had been advised 
of the possibility of the same. 
 
Critical Applications: 
UTIA AV CR v.v.i. products are not designed or intended to be fail-safe, or for use in any application requiring 
fail-safe performance, such as life-support or safety devices or systems, Class III medical devices, nuclear 
facilities, applications related to the deployment of airbags, or any other applications that could lead to death, 
personal injury, or severe property or environmental damage (individually and collectively, "Critical 
Applications"). Customer assumes the sole risk and liability of any use of UTIA AV CR v.v.i. products in Critical 
Applications, subject only to applicable laws and regulations governing limitations on product liability. 
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