signaL processing http://sp.utia.cz

U-'-'.A Akademie véd Ceské republiky }
Ustav teorie informace a automatizace AV CR, v.v.i.

Application of CUDA in DSP

Tomas Mazanec
mazanec@utia.cas.cz, +420-2-6605 2472...

Contents
1 Introduction

2 Signal filtering with FIR filter on CUDA platform
2.1 Evaluated implementations of FIRfilter L.
2.2 FIRfilter implementationresults.

3 Cross ambiguity function on CUDA platform
3.1 Evaluated implementation ofthe CAF,
3.2 Achieved results and comparison e e e

4 Conclusion
4.1 FIR filterimplementation e
4.2 CAFimplementationo

A Technical specifications of used hardware platforms

B Installation and running of the implementations
B.1 Running the FIRfilter
B.2 Running the CAF implementation

C FIR filter on common CPU
D CD-ROM content

E Acknowledgement

© 2009 UTIA AV CR, v.v.i.
All disclosure and/or reproduction rights reserved.

Revision

Revision Date Author Description of document changes
0 20.7.2009 T.M. New document
1
2
3
4

VS department of
signau processing

http://sp.utia.cz

~
2/16

U-'-'A Akademie véd Ceské republiky .
Ustav teorie informace a automatizace AV CR, v.v.i.

© 2009 UTIAAV CR, v.v.i.
All disclosure and/or reproduction rights reserved

1 Introduction

NVIDIA® CUDA™ is a general purpose parallel computing architecture that leverages the parallel
compute engine in NVIDIA graphics processing units (GPUs) to solve many complex computational
problems in a fraction of the time required on a CPU. It includes the CUDA Instruction Set Architecture
(ISA) and the parallel compute engine in the GPU. To program to the CUDA architecture, developers
can, today, use C, one of the most widely used high-level programming languages, which can then be
run at great performance on a CUDA enabled processor.

Since a hardware with CUDA capability became available during early 2008, we decided to learn
CUDA technology and evaluate some experiments in area of Digital Signal Processing. First HW used
for experiments was CUDA v1.1 capability graphics card with G80 family GPU on board. Later experi-
ments were realized on CUDA v1.3 capability graphics card equipped with GTX200 GPU. Development
software suite (CUDA toolkit and SDK) we used, evolved from version 1.1 to 2.2 nowadays. Technical
specifications of platforms used are outlined in appendixA.

The first evaluated CUDA implementation is a signal filtering with Finite Impulse Response digital
filter (FIR). Next implementation is enumeration of Cross Ambiguity Function (CAF) on sampled radio-
frequency signals. Note that chosen arithmetic was single-precision floating point in all cases.

2 Signal filtering with FIR filter on CUDA platform

Digital filters with finite impulse response are considered as basic application of digital signal process-
ing. Filtering with FIR can be described in time-domain as equation for output signal y(n):

M—1

yn)= > hk)x(n—k), (1)

k=0

where M is the filter order, x(n) is input signal, h(k) is filter impulse response and zero initial conditions
are assumed where (n — k) < 0.

2.1 Evaluated implementations of FIR filter

Since the execution model of CUDA platform recognizes groups of threads as elementary parallel
batch and our implementations follow this model, the FIR filter output enumeration is done in parallel
threads context of CUDA. There are two possible ways how to implement FIR described by (1) in
parallel:

1. Each thread enumerates one output sample within M-length loop, i.e.: dot product of filter re-
sponse vector h(0..M — 1) and input vector x(n — M + 1..n) is done by one thread for a fixed n,
while the other threads enumerate dot products for a different n-values.

2. Group of M-threads enumerates one output sample within data-length loop, i.e.: vectors of filter
response h(0..M — 1) and of input x(n — M + 1..n) are multiplied element-wise by M-threads
in parallel and then follows parallel sum operation to compute the output sample. Value of n is
advanced in next loop iteration.

Implementation of the second approach to FIR has shown poor performance during initial experi-
ments and thus it has been discarded from final implementation.

The first type of implementation approach satisfied in experiments and it has been extended and
evaluated. There should be mentioned several considerations with implementation. Since the HW of
GPU puts some limits to CUDA, namely maximal number of threads per block, the FIR implementation
is also limited. Obviously the implementation can be extended to overcome these limits, but with price

signaL processing http://sp.utia.cz

leiA Akademie vé&d Ceské republiky ; ©2009 UTIAAV CR, v.v.i.
Ustav teorie informace a automatizace AV CR, v.v.i. All disclosure and/or reproduction rights reserved

of lowering performance. The number of threads per block (<=512 at CUDA capability 1.3) means
the largest parallel group of threads that can be computed at once. Thus for filters with order grater
than this number, implementation was extended. This evaluation led to two separate implementations
marked (I) and (Il). The second one (ll), which has limited FIR order to max. 512, allows to compare
performance decrease of the first and extended implementation (l).

Suitable utilization of available GPU threads and memory accesses have to be done to achieve
some performance of implementation. Implementation | use several performance optimization tech-
niques of CUDA. Texture memory access is used for both filter coefficients and input vector. There is
benefit of cached access to global memory and disadvantage with texture address limit, about 227 in
case of 1-dimensional array. Shared memory (on chip GPU) is used to store immediate output values.
There is benefit of cache for write access to global memory, but disadvantage of limited size of shared
memory. This limit is about near to 4k of 32bit floats.

2.2 FIR filter implementation results

Following tables (Tab. 1 and Tab. 2) present achieved results of both implementations (I and Il) of FIR
filter. Implementation Il has limited filter order to max. M=512, but Implementation Il is capable of
greater filter order, up to limit of shared memory on GPU, where immediate results are stored (this limit
is close to 4k array of 32bit floats). Comparison between early experiments on CUDA v1.1 and later
with CUDA 2.x can be seen on the first table, Tab. 1.

Evaluation of utilized GPU threads and thus computing performance is presented on table Tab. 2.
The table shows relation between performance and desired FIR order with a given input vector length.
Graphic representation of this relation is depicted on Fig. 1.

25000 4

20000

15000

MFlops

10000 -

5000

0 T T T 1
10 100 1000 10000

NB

‘+ M=512 —®&— M=1024 M=1536 M=2048 —#— M=3072 ‘

Figure 1: Graph of relation between computing performance and desired FIR order for a given input
vector length (created from Table 2).

signaL processing http://sp.utia.cz

leiA Akademie vé&d Ceské republiky ; ©2009 UTIAAV CR, v.v.i.
Ustav teorie informace a automatizace AV CR, v.v.i. All disclosure and/or reproduction rights reserved

CUDA v1.1
implementation |

M 512 1024 2048 3072
N 3585 3073 2049 3073
y_len 71681 36865 18433 12289
MULS [x 1e+06] 37 38 38 38
Mflops 3250 3300 2450 2850

implementation I

M 512

N 3585

y_len 71681

MULSs [x 1e+06] 37

Mflops 3050

CUDA v2.1

implementation |

M 512 1024 2048 3072
N 3585 3073 2049 3073
y_len 71681 36865 18433 12289
MULSs [x 1e+06] 37 38 38 38
Mflops 13800 11200 8350 3970

implementation Il

M 512
N 3585
y_len 71681
MULSs [x 1e+06] 37
Mflops 14000

Table 1: FIR filter implementation results - performance in MegaFlops (M is filter order, N is length
of vector segment stored in shared memory, y_len is total length of output vector and MULs denotes
number of multiplying operations enumerated).

signauv processing http://sp.utia.cz

leiA Akademie vé&d Ceské republiky ; ©2009 UTIAAV CR, v.v.i.
Ustav teorie informace a automatizace AV CR, v.v.i. All disclosure and/or reproduction rights reserved

CUDA v2.1, implementation |

Mflops
NB 1 2 5 10 20 50
M=512 947 1893 4791 9263 13834 17054
NB 1 2 5 10 20 50
M=1024 969 1943 4879 9402 13867 18158
NB 1 2 5 10 20 50
M=1536 859 1721 4342 8478 12798 17417
NB 1 2 5 10 20 50
M=2048 917 1855 4649 9036 13386 17845
NB 1 2 5 10 20 50
M=3072 990 1979 4978 9613 14006 18289
Mflops
NB 100 200 500 1000 2000 5000
M=512 16874 17515 19097 19586 19546 1250
NB 100 200 500 1000 2000 5000
M=1024 18608 19488 20266 20237 6488 3721
NB 100 200 500 1000 2000 5000
M=1536 18223 19312 20212 20229 1838 5606
NB 100 200 500 1000 2000 5000
M=2048 18471 19461 20297 20258 9997 3729
NB 100 200 500 1000 2000 5000
M=3072 18715 19635 1830 1823 1841 1853

Table 2: FIR filter Implementation | - performance in MegaFlops (M is filter order and NB is enumerated
number of blocks executed on GPU, which depends on input vector length).

signauv processing http://sp.utia.cz

©2009 UTIAAV CR, v.v.i.
All disclosure and/or reproduction rights reserved

'j-'-iA Akademie véd Ceské republiky .
Ustav teorie informace a automatizace AV CR, v.v.i.

3 Cross ambiguity function on CUDA platform

Cross Ambiguity Function (CAF) is a signal processing task necessary in Passive coherent location
systems. CAF represents PSD distribution of the cross-correlation between direct and reflected signals
and it’s definition is:

CAF (1, k) Z s1(n)sp(n + 1) e I27kn/N (2)

where the signals s{(n) and ss(n) in time-domain are cross-correlated with t-shift parameter and
Fourier transformed. All signals/vectors are assumed to be complex numbers.

Passive coherent location needs an accurate, effective and efficient implementation of CAF. Several
properties, necessary for PCL, of input signals and demands on output function have to be mentioned.
Sampling rate of input signals is in range of hundreds of kilo-Hertz (e.g.:200kHz), integration period
(FFT size) is large (e.g.: 128k samples) and number of enumerated delays is in hundreds of samples
(e.g.: up to 600). Finally there is consideration of PCL system performance thus the time period in
which a single CAF enumeration have to be finished (e.g.: 0.5sec).

3.1 Evaluated implementation of the CAF

Given application of the CAF, we implemented, demanded a Matlab interface and so the implemen-
tation use MEX-to-CUDA interface for input signals and results exchange. The implementation pro-
cesses in following steps:

1. MEX: memory allocation, handle the input vectors
2. CUDA: copy data to device

3. CUDA: kernel multiplies input vectors, 600-times

4. CUFFT: 1-D 128k FFT on all 600 vectors

5. CUDA + MEX: copy data to host, handle the results

Let’s note some implementation details that had been evaluated within CAF development on CUDA
platform. All data are complex and single-precision (i.e: two floats per one number). Input data are
two 128k vectors in this application, but the amount of data processed on GPU device is huge, in this
case it is 128k*8B*600 = 600MB. Output data are only a few hundred spectral lines so it is a vector of
a few hundred complex numbers (pairs of floats).

3.2 Achieved results and comparison

CAF implementation on CUDA has achieved important results which have met desired time constrains.
Other goal of CAF evaluation was comparison to former implementations.

Computed CAF task had a following properties:
input signals length: 128k samples

FFT size: 128k samples

number of enumerated delays: 600

time constraint: <=0.5sec

Achieved computation time on earlier HW (8600GT 512MB, CUDA v1.1, CPU 2.4GHz) with our
implementation with MEX interfacing CUDA routine is 2.0sec compared to Matlab routine with 3.9sec
computation time. Later HW platform (GTX260 896MB, CUDA v2.1, CPU 3.2GHz) brought short

signaL processing http://sp.utia.cz

leiA Akademie vé&d Ceské republiky ©2009 UTIAAV CR, v.v.i.
Ustav teorie informace a automatizace AV CR, V.v.i. All disclosure and/or reproduction rights reserved

computation time of both MEX interfacing CUDA routine, i.e.: 0.44sec achieved, and standalone Matlab
routine, i.e.: 2.8sec achieved.

There is an interesting case to compare. Our first performance driven implementation in Q4 of
the year 2006 brought results on Xilinx FPGA platforms. There was 40bit fixed point arithmetic used
and customized Fourier transform engine for CAF computation. Resulting computational times were
reached: 1.9sec on Virtex2 FPGA platform and 1.3sec on Virtex4 FPGA platform. More information

can be found in [5] and [6].

HW MEX & CUDA | Matlab
8600GT, CUDA v1.1 2.0sec 3.9sec
GTX260, CUDA v2.1 0.44sec 2.8sec
Virtex2 (FPGA, year 2006) 1.9sec
Virtex4 (FPGA, year 2006) 1.3sec

Table 3: Summary of CAF computation time results

Resulting CAF output computed on GPU with real-measured input signals is depicted on Fig. 2.
More important is the relative error of CUDA implementation against Matlab standalone routine with
implicit double-precision. This relative error is depicted on Fig. 3. Achieved computation times are
summarized in the Table 3.

-120

-130

-140

-150

CAF [dB]

-160

-170

-180+]')

0

signauv processing

ki t" .\f"tl. 4 II \ | ‘|I:.‘h.ll'l ;|.".
ol | P R I,

i | {
1 | ik
|5

300

600 -200 -100

tau [-] -300

f[Hz]

Figure 2: CAF output example for a real world radar signals.

http://sp.utia.cz

© 2009 UTIAAV CR, v.v.i.

'j-'-iA Akademie véd Ceské republiky .
Ustav teorie informace a automatizace AV CR, v.v.i. All disclosure and/or reproduction rights reserved

) X 10'4 Maximal Normalized Error
T T T

A0 TSP YA RSVENE A8 AP SPRPUP 20 FORV-. 10 0 PO 002 DO 0§ A8 S etk Sl
0 100 200 300 400 500 600

:0[] 1‘””100 ﬂ‘ L‘)O | tl lm“ xjcl)‘oﬂ Il J

Figure 3: CAF - relative error of CUDA single-precision implementation compared to Matlab double-
precision.

4 Conclusion

4.1 FIR filter implementation

Evaluation of two different approaches of implementation showed that there is always necessary to find
how to fit the given algorithm to CUDA platform, CUDA thread context respectively. Winning approach
(number 1 from section 2.1) was selected for next experiments.

The GPU hardware limits were taken to consideration and two other implementations were pre-
sented (marked | and Il). Implementation I, the extended one, had shown that an extension of FIR
algorithm lowers resulting performance for higher FIR orders, but under constant number of multiplica-
tion operations (Tab. 1).

Utilization of GPU threads have significant influence on resulting computational performance. Oc-
cupation of GPU which is leading to the performance is summarized in table Tab. 2 for a different FIR
orders and input vector lengths.

Despite of all considerations that have to be taken the CUDA implementations are capable to
achieve significant performance, that can reach to 20 GFlops in the case of FIR algorithm and later
HW platform (within single-precision floating point number representation).

4.2 CAF implementation

The later CAF implementation on CUDA platform has achieved important results which have met
desired time constrains (within single-precision floating point number representation). This time con-
straint is 0.5 sec to finish one CAF enumeration.

signaL processing http://sp.utia.cz

leiA Akademie vé&d Ceské republiky ; ©2009 UTIAAV CR, v.v.i.
Ustav teorie informace a automatizace AV CR, v.v.i. All disclosure and/or reproduction rights reserved

The GPU hardware limits were hitting only in the amount of necessary memory space on graphics
card. The CAF implementation is capable to split the computation routine in L-loops with effort to fit
the total amount of data to smaller memory space, e.g.: 8600GT/512MB graphics card.

There is an interesting case to compare. Our first performance driven implementation in Q4 of
the year 2006 brought results on Xilinx FPGA platforms. There was 40bit fixed point arithmetic used
and customized Fourier transform engine for CAF computation. Resulting computational times were
reached: 1.9sec on Virtex2 FPGA platform and 1.3sec on Virtex4 FPGA platform. More information
can be found in [5] and [6].

Finally the table Tab. 3 summarizes all the present and former achievements of our CAF implemen-
tations.

signaL processing http://sp.utia.cz

l7TiA Akademie vé&d Ceské republiky ; ©2009 UTIAAV CR, v.v.i.
Ustav teorie informace a automatizace AV CR, v.v.i. All disclosure and/or reproduction rights reserved

A Technical specifications of used hardware platforms

+ Early implementations: GeForce 8600GT 512MB, personal computer with Intel Core Quad CPU
at 2.43GHz and PCI-Express bus v1.0. CUDA toolkit and SDK version 1.1 on Ubuntu Linux
v7.10.

* Recent implementations: GeForce GTX260 Core 216 896MB, personal computer with Intel Core
Duo CPU at 3.16GHz and PCI-Express bus v2.0. CUDA toolkit and SDK version 2.1 on Ubuntu
Linux v8.04.

B Installation and running of the implementations

Source code of all CUDA implementations should be put into "projects” sub-folder placed in the folder
where the NVidia CUDA SDK is installed, e.qg.:
SDK_INSTALL_PATH="${HOME}/NVIDIA CUDA_SDK"

Implementations of FIR and CAF are then placed in separate folders:
${SDK_INSTALL PATH}/projects/tFIR implementationI/
${SDK_INSTALL PATH}/projects/tFIR_implementationII/
${SDK_INSTALL_PATH}/projects/tCAF-mex/

${SDK_INSTALL _PATH}/projects/tCAF/

Source codes of implementations are equipped with “GNU make Makefile” files, thus compilation of
sources is natively targeted to linux platform. Source codes are platform independent and so can be
compiled and ran on other platforms supported by CUDA SDK.

B.1 Running the FIR filter

Execution of binary is possible with or without command-line options, e.g.:
./tFIR_implementationI -NB=10 -M=16

Command-line options are:
M - desired FIR filter order, in range: 1..3584 for Implementation | (or up to 512 for Implementation I
NB - number of blocks to be enumerated as filter’s input vector, also means number of blocks executed

Command-line output of FIR Implementation II:

./tFIR_implementationII -NB=10 -M=16

FIR order M: 16 with NT 16 threads
No. of Blocks:10, where K:255, perBlock inp:4096 perBlock out:4081
xlen:40816 , y_len:40801

Input file: ../../../projects/tFIR_implementationII/data/fir2DP.dat
Y_len = N-M+1 !!!

SUPERGOLD, casting to FLOAT according to device !

Output file: ../../../projects/tFIR_implementationII/data/input.dat
Output file: ./projects/tFIR_implementationII/data/output.dat
Output file: ./projects/tFIR_implementationII/data/reference.dat
Output file: ./projects/tFIR_implementationII/data/coeffRev.dat
Test PASSED

~N NN N
NN N N

signaL processing http://sp.utia.cz

leiA Akademie vé&d Ceské republiky ; ©2009 UTIAAV CR, v.v.i.
Ustav teorie informace a automatizace AV CR, v.v.i. All disclosure and/or reproduction rights reserved

Processing time: 1.546000 (ms) and float MULs: 6.528160e+05
MegaFlopsy: 422.261322

Command-line output of FIR Implementation I:

./tFIR_implementationI -NB=100 -M=2048

->2048-th order FIR-> M forced to: 2048, No. of loops:4, with No. of threads:512
FIR order M: 2048 with NT 512 threads
No. of Blocks:100, where K:1, perBlock inp:4096 perBlock out:2049

x1en:206848 , y_len:204801

Input file: ../../../projects/tFIR_implementationI/data/fir2DP.dat

Y_len = N-M+1 I!!

SUPERGOLD, casting to FLOAT according to device !

Data files would be too long , skipping.

Test PASSED

Processing time: 22.712999 (ms) and float MULs: 4.194324e+08
MegaFlopsy: 18466.625000

Notes: While the FIR implementation is running, it's output is pretty verbose. One of important infor-
mation printed out is the result of comparison of CUDA computation and clean C-code computation.
If CUDA computation enumerates correct results, the string “Test PASSED” is printed out. Other im-
portant information is: NT - the number of threads executed on GPU, perBlock inp - amount of input
vector numbers stored in shared memory on GPU that leads to x_1en - the length of enumerated input
vector which corresponds to input parameter, NB, number of blocks. Number of blocks and filter order
gives the output vector length - y_len. Extended implementation (number 1), also shows the extended
configuration, e.g.:
->2000-th order FIR-> M forced to: 2048, No. of loops:4, with No. of threads:512
This configuration summary says that desired filter order, M=2000, is rounded to some multiple of 512,
i.e. to 2048, and that there is need to compute 4 loops with 512-thread block.

Other information printed out is the Processing time, then the number of enumerated multiplica-
tion operations, MULs, and thus enumerated computational performance - MegaFlops.

B.2 Running the CAF implementation

MEX-CUDA implementation is ran from Matlab environment by m-script cafCompare .m.
Command-line output of MEX-CUDA implementation of the CAF:

N:
131072

600
**%x Matlab routine **x*
Elapsed time is 3.064718 seconds.

signaL processing http://sp.utia.cz

leiA Akademie vé&d Ceské republiky ; ©2009 UTIAAV CR, v.v.i.
Ustav teorie informace a automatizace AV CR, v.v.i. All disclosure and/or reproduction rights reserved

**x* CUDA routine *x*x*
Mex-CUDA Cross Ambiguity Function.
MEX: inputs are double precision
MEX: tau:600
MEX: L:1
MEX: NS:300
MEX: host_mem_size=2812kB
CUDA: N=131072 m=600 L=1 ns=300 NT=512 NB=256
device_mem_size=600MB for output
Elapsed time is 0.376213 seconds.
*x**x Error kkx
ans =
4.487918340601027e-04 7.843635074777922e-08

pisvejcConst =

-65
cmin =

-1.807462827090507e+02
cmax =

-1.471502924317620e+02

CUDA run-time only implementation of the CAF is ran as any other CUDA SDK project, by it’s binary
tCAF.

Command-line output of CUDA run-time only CAF implementation:

./tCAF

CAF Exec: N:131072, tau 0->599, with batch size: 600 batches 1-times looped.
Kernel Exec: NT:512, NB:256, shmem_len:1536 of Complex; NL:1

Input file: ../../../projects/tCAF/cafdata/slcplx.dat

Input file: ../../../projects/tCAF/cafdata/s2cplx.dat

Host code of Conjugate in 0.138000 (ms) and 1.310720e+05 ops => 949.797058 MFlops.
Check sizeof cufftComplex:8B vs. Complex:8B

stsizedev:629145600B , fftdatasize:629145600B

——=>>>

Overall Processing time: 843.828003 (ms) and Ops: 1.415578e+09

MegaFlopsy: 1677.566406

Notes: While the CAF implementation is running, it's output is pretty verbose. One of important in-
formation printed out is the comparison of Matlab routine reference results and CUDA routine results.
Value of relative error enumerated is quoted by **x Error **x message followed by two numbers -
maximum and minimum of relative error. Other important information printed out is the Elapsed time.
Configuration of the CAF enumeration is also printed out for both routines. Following consideration
parameters are printed out: the length of input vectors, N, and thus FFT-size, m - the number of enu-
merated delays, T, NS - number of output samples used, L - number of main loops to be enumerated
in case where the amount of GPU memory is less than necessary amount for all data. GPU execution
configuration - threads and blocks, is also printed out.

signaL processing http://sp.utia.cz

leiA Akademie vé&d Ceské republiky ; ©2009 UTIAAV CR, v.v.i.
Ustav teorie informace a automatizace AV CR, v.v.i. All disclosure and/or reproduction rights reserved

C FIR filter on common CPU

Simple FIR implementation on PC for comparison with CUDA implementation was developed in ANSI C
and compiled with gcc (GNU C compiler v4.1) with optimizations for the CPU type and math en-
abled e.g.: gcc -march=nocona -03 -ffast-math -funroll-loops Numeric precision was set
to single-precision (float type).

FIR enumeration loop stands like following piece of C-code for input vector x, output vector vy, filter
coefficients h with filter order M.

float sum, *x, *y, *h;

for (n=0; n<N; n++) {
sum = O;
for (m=0; m<M; m++) {
sum += h[m] * x[M-m-1+n];
}
y[n] = sum;

}

Achieved performance of this FIR implementation at PC with 3GHz CPU was approximately 3GFlops
with input sequence length 1M samples and FIR order M=33.

signaL processing http://sp.utia.cz

l7TiA Akademie vé&d Ceské republiky ; ©2009 UTIAAV CR, v.v.i.
Ustav teorie informace a automatizace AV CR, v.v.i. All disclosure and/or reproduction rights reserved

D CD-ROM content

Software package consists of four folders, each projects are:
tCAF - CAF implementation as CUDA runtime only.

tCAF-mex - CAF implementation as CUDA interfaced to Matlab.
tFIR_implementationl - FIR implementation no. I.
tFIR_implementationll - FIR implementation no. Il.

CD-ROM:

tCAF

tCAF-mex
tFIR_implementationI
tFIR_implementationII

./tCAF:
cafdata
cucomplex.cu
cutesto.cu
Makefile
tCAF.cu
tCAF_kernel.cu

./tCAF/cafdata:
slcplx.dat
s2cplx.dat

./tCAF-mex
cafCompare.m
caf_cuda.cu
caf_cuda.mexab4
cafdata.mat
caf_kernel.cu
caf_runtime.cu
cutil.h
cutil_inline.h
Makefile

nvmex
nvopts.sh

./tFIR_implementationI:
cutesto.cu

data

Makefile

tFIR.cu

tFIR_gold.cpp
tFIR_kernel.cu

./tFIR_implementationI/data:
fir2DP.dat

signauv processing

'j-'-iA Akademie véd Ceské republiky .
Ustav teorie informace a automatizace AV CR, v.v.i.

http://sp.utia.cz

©2009 UTIAAV CR, v.v.i.
All disclosure and/or reproduction rights reserved

./tFIR_implementationII:
cutesto.cu

data

Makefile

tFIR.cu

tFIR_gold.cpp
tFIR_kernel.cu

./tFIR_implementationII/data:
fir2DP.dat

y department of
signau processing http://sp.utia.cz

~
14/16

UTIA Akademie vé&d Ceské republiky ; ©2009 UTIAAV CR, v.v.i.
Ustav teorie informace a automatizace AV CR, v.v.i. All disclosure and/or reproduction rights reserved

E Acknowledgement

The research leading to these results has received funding from the ARTEMIS Joint Undertaking under
grant agreement No. 100029 and from the Czech Ministry of Education, Youth and Sport under grant
agreement No. 7H09005.

V = department of
signau processing http://sp.utia.cz

~
15/16

U-"Aj Akademie vé&d Ceské republiky ; ©2009 UTIAAV CR, v.v.i.
Ustav teorie informace a automatizace AV CR, v.v.i. All disclosure and/or reproduction rights reserved

References

[1] CUDA Compiler Driver NVCC. http://www.nvidia.com/object/cuda_develop.html.
[2] CUDA Programming Guide v2.2. http://www.nvidia.com/object/cuda_develop.html.
[8] CUDA Reference Manual. http://www.nvidia.com/object/cuda_develop.html.

[4] CUDA Zone. http://www.nvidia.com/object/cuda_home.html.

[5] Hefmanek, Antonin ; Kunes, Michal ; Kvasni¢ka, M. Comuputation of Long Time Cross Ambiguity
function using reconfigurable HW. Proceedings of the 6th IEEE International Symposium on Signal
Processing and Information Technology. Vancouver., (ISBN 0-7803-9754-1):1-5., 2006.

[6] Kvasnictka, M. ; Hefmanek, Antonin ; Kunes, Michgl. Implervnentace akceleratoru pro vypocet pro
vypocet vérohodnostni funkce [program]. Praha : UTIA AV CR. CD ROM, 10,4 MB., 2007.

[7] Say Hello To DirectX 10, Or 128 ALUs In Action: NVIDIA GeForce 8800 GTX (G80). http://www.
digit-life.com/articles2/video/g80-partl.html.

[8] Wikipedia. http://en.wikipedia.org/wiki/CUDA.

signaL processing http://sp.utia.cz

l7TiA Akademie vé&d Ceské republiky ; ©2009 UTIAAV CR, v.v.i.
Ustav teorie informace a automatizace AV CR, v.v.i. All disclosure and/or reproduction rights reserved

http://www.nvidia.com/object/cuda_develop.html
http://www.nvidia.com/object/cuda_develop.html
http://www.nvidia.com/object/cuda_develop.html
http://www.nvidia.com/object/cuda_home.html
http://www.digit-life.com/articles2/video/g80-part1.html
http://www.digit-life.com/articles2/video/g80-part1.html
http://en.wikipedia.org/wiki/CUDA

	1 Introduction
	2 Signal filtering with FIR filter on CUDA platform
	2.1 Evaluated implementations of FIR filter
	2.2 FIR filter implementation results

	3 Cross ambiguity function on CUDA platform
	3.1 Evaluated implementation of the CAF
	3.2 Achieved results and comparison

	4 Conclusion
	4.1 FIR filter implementation
	4.2 CAF implementation

	A Technical specifications of used hardware platforms
	B Installation and running of the implementations
	B.1 Running the FIR filter
	B.2 Running the CAF implementation

	C FIR filter on common CPU
	D CD-ROM content
	E Acknowledgement

