

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved.

Application Note

http://sp.utia.cz

SILENSE TE0706+TE0720 Ultrasound Capture
Platform with Example Application

Zdeněk Pohl
zdenek.pohl@utia.cas.cz (SILENSE)

Revision history

Rev. Date Author Description

0 11.2.2018 Z.P. Document creation

1 2.1.2019 Z.P. Content update

2 7.1.2019 Z.P. Package content update

http://sp.utia.cz

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

ii

Contents

1 Introduction .. 1
2 Description ... 1
3 Required Hardware and Software .. 1

3.1 FPGA Design .. 2
4 Used tools and resources .. 6
5 Implementation .. 6
6 License ...11
7 Content of the packages ...11
8 References ...11

Acknowledgement

This work has been supported from project SILENSE, project number ECSEL 737487 and
MSMT 8A17006.

http://sp.utia.cz

© 2018 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

1/11

1 Introduction

The ECSEL project SILENSE [1] is focused on novel ultrasound (US) applications based on
new generation of micro mechanical (MEM) ultrasound transducers. The ultrasound waves
are acoustic waves with frequencies above the levels which can human perceive. By the
term ultrasonic transducer we call devices capable to transmit and also receive US waves.

The state-of-the-art ultrasound applications are for example range or fluid level
measurement, speed measurement, medical ultrasound imaging, defect detection or
underwater communication. Each type of application poses different requirements on US
transduces. New types of devices are bringing possibility to further miniaturize, reach low
power operation, access wider range of frequencies or to build larger arrays of the US
sensitive elements.

2 Description
This document provides documentation to hardware platform capable to capture ultrasound
by prototype microphone array and also to generate ultrasound waves. The platform is built
from Trenz TE0706 board with attached TE0720 GigaZee module. The microphone array
was developed and provided by Brno University of Technology.

3 Required Hardware and Software

Hardware required to use the US capture platform and to run the example application:

1. FPGA Module TE0720 from Trenz Electronic.
2. Carrier board TE0706.
3. 5V DC Power source for TE0706.
4. MiniUSB cable for USB UART.
5. XMOD FTDI JTAG Adapter TE0790-02
6. Micro SD card for design storage.
7. Prototype microphone array from BUT.
8. BUT array connection cable.
9. (optional) Ethernet cable for FTP connection with board.

Optional Equipment:

1. Passive heatsink for Zynq Device.

http://sp.utia.cz

© 2018 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

2/11

Figure 1: Hardware setup: Carrier TE0706, module TE0720, XMOD FTDI JTAG Adapter TE0790, passive

heatsink, BUT mic array prototype, connection cable and power source.

Software required:

To run example application:

1. PC serial terminal application – for example putty can be used.
2. SD card slot on PC with MicroSD reduction to create filesystem and write bitstream

file.
3. demo_files.zip package

Software required to rebuild example application from sources or to modify it:

1. demo_files_full.zip source package.
2. PC with Installed SDx 2017.4 tool from Xilinx

3.1 FPGA Design

Design for FPGA contains interfaces to capture digital microphone data from set of PDM
microphones and also implements chirp waveform generator.

The mic array is connected via TE0706 J5 header. Pinout of the header can be found in
Table 1. The connection cable for the mic array was created according to pin connections
described in the table.

FPGA capture chain prepared for Xilinx SDSoC tool is shown in Figure 2.

http://sp.utia.cz

© 2018 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

3/11

VGA DE-
15 Pin

VUT Demo
Signal

TE0706
J5 Pin

TE0706 Signal TE0706
JB Pin

TE0720
JM Pin

TE0720
Pin

Description

2 Y1 7 B33_L13_N JB2 23 JM2 24 W18 mic output 13-14

3 Y3 8 B33_L13_P JB2 21 JM2 22 W17 mic output 9-10

4 Y5 9 B33_L4_N JB2 15 JM2 16 W21 mic output 5-6

5 Y7 10 B33_L4_P JB2 13 JM2 14 W20 mic output 1-2

7 Y0 11 B33_L18_N JB2 38 JM2 37 AB16 mic output 15-16

8 Y2 12 B33_L18_P JB2 36 JM2 35 AA16 mic output 11-12

9 Y4 13 B33_L17_N JB2 34 JM2 33 AB17 mic output 7-8

10 Y6 14 B33_L17_P JB2 32 JM2 31 AA17 mic output 3-4

12 VIN 6 3.3V - - - input voltage 2,5 - 5,5
V required, input to DCDC
with 1,8V output for board
logic

13 GND 1,2 GND - - - ground

14 CNTR-G 15 B33_L12_N JB2 28 JM2 27 AA18 Output to middle US
speaker, rectangular signal
40 kHz, U = 1,2…5,5 V

15 CLK-G 16 B33_L12_P JB2 26 JM2 26 Y18 Clock signal for mics,
ultrasonic mode =
3,072…4,8 MHz, voltage
min. 1,2 V, max. 5,5 V
(74LVC541A). sleep = clock
0…250 kHz

Table 1: Microphone array pin connection to TE0706 with TE0720 SoM

http://sp.utia.cz

© 2018 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

4/11

Figure 2: Microphone capture and chirp synthesis chain

http://sp.utia.cz

© 2018 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

5/11

It capture and chirp synthesis chain consists of:

1. Block clk_wiz_pdm_clk generates double frequency needed for microphones, in our
case 9.6 MHz. The frequency is used as clock for stream_fifo_input block to capture
data at DDR speed. The microphones are operating in stereo mode (sharing one data
wire by pair of microphones, each providing its output in one half of clock period and
in third state otherwise)

2. Block stream_fifo_output is written to by hardware chirp generator created in
SDSoC tool. The generator writes created waveform to this FIFO to generate desired
chirp. Data from FIFO are continually read at 100MHz and sent to output port.

3. Block dual_port_mem. Block stream_fifo_output generates one bit signal to output,
other outputs are used to control capture of microphone data. For that reason the
capture control signals are passed through dual_port_mem block to cross from
100MHz stream_fifo_output domain to capture data domain at 9.6MHz

4. Capture control signals are concatenated at xlconcat_2 with capture data and
sample_cnt output and passed to stream_fifo_input block. Data and control signals
from that block are used in SDSoC to capture chirp echoes correctly with detection of
lost samples.

Meaning of individual signals going from xlconcat_2 to stream_fifo_input is
summarized in Table 2.

Bit Signal Description

7:0 Y Mic data, one bit for 2
microphones in stereo mode.
Each half period one mic
sends its output; otherwise
third state is at output.

8 L/R CLK Signal indicates if data in Y
are from left or right
microphone

9 Chirp Active Goes high when chirp
generation starts, goes low at
chirp end. Stays low until
next chirp is generated.

10 Mic Enable Microphone enable signal
indicates start of mic array
capture, starts with chirp
active and ends after echo
timeout had passed.

11 CNTR_G Chirp driving signal
resampled to mic array clock
domain (9,6MHz)

12:31 Sample Cnt Sample counter which tags
each captured sample for
simple detection of lost
sample, counter is in reset
state until Mic Enable is
active.

Table 2: Signal received by stream_fifo_input block

http://sp.utia.cz

© 2018 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

6/11

The chirp generator is required to create chirp waveform as shown in Figure 3. The
generator must raise mic_enable and chirp_enable signals at the beginning. After that
is can create desired chirp waveform and clear the chirp_enable signal. After that the
chirp generator must also hold mic_enable as long as the mic capture of echoes is
requested. Once the capture is at the end mic_enable may be cleared and new chirp
process can be started. All three signals (mic_enable, chirp_enable and CNTR_G)
must be driven in chirp generator by writing to stream_fifo_output. Data capture
process is then using them to properly detect start of mic recording, location of chirp
in captured data and also chirp waveform sent to US speaker.

Chirp_enable

CNTR_G

Mic_enable

Figure 3: Required waveform of signals generated by chirp generator to capture microphone array data.

5. Block stream_fifo_input captures data from xlconcat_2 described in previous point
of this list. SDSoC programmer must take into account that this FIFO continually
accepts input data until it is full. When SDSoC programmer wants to read data from it,
he must flush whatever data it may contain before getting new captured data. The
interfaces of both FIFOs in this design are running at 150MHz on SDSoC side. The
input FIFO captures data at 9,6MHz and output FIFO sends its outputs to I/O ports at
100MHz.

4 Used tools and resources

The example application can be rebuilt from sources in Xilinx SDSoC tool. So called SDSoC
platform is required to be loaded first by the tool before importing the example application
project named ‘capture_multichirp’ (both can be found in full demo archive).

Compilation from sources requires:

1. Xilinx SDx 2017.4 (Includes Vivado 2017.4, Vivado HLS 2017.4, SDK 2017.4)
Test of compiled bitstreams and example application:

1. Serial terminal application like putty for example.
View of captured data:

1. Matlab

5 Implementation

We assume in this section that platform for SDSoC has been successfully loaded to SDSoC
tool. Now the example application can be implemented. Steps 1-5 can be skipped if
precompiled SD card content in sd_card folder of the archive is used.

http://sp.utia.cz

© 2018 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

7/11

1. Open SDSoC tool by running SDx IDE 2017.4.
2. Choose import project.
3. Select folder with ‘capture_multichirp’ example application project provided in this

demo package. Check “Copy projects into workspace” checkbox.
4. Check if all clock setting for hardware accelerators and data motion network clock

frequency are set to 150MHz.
5. Build for the project.
6. Compilation may take some time. After project is built, the sd_card folder contains

files which must be placed on SD card and used to boot the board.
7. Connect USB to UART cable and connect your serial terminal to the board. Use

parameters 115200, 8bit, none, 1stop bit.
8. Change directory to /run/media/mmcblk0p1
9. Run the capture_multichirp application. Parameters are summarized below:

./capture_multichirp –l low_frequency -h high_frequency -n
number_of_chirp_periods -t echo_timeout -c chirp_count -B –o filename

Where:

-l low_frequency Specifies starting frequency of chirp

-h high_frequency Ending frequency of each chirp

-n number_of_chirp_periods Number of periods generated in each chirp

-t echo_timeout Time between two chirps for which
microphones will receive echoes

-c chirp_count Number of chirps to be generated and also
received

-B Store data in binary format (faster)
NOTE: Matlab scripts support only binary
format files

-o filename Specify output file name for captured data

10. Copy captured data from board to PC and run Matlab. Use Matlab script to process

captured data: for example let’s assume that we have captured data to file
‘echo_hand.bin’ and we have measurement parameters correctly set in ‘p_hand’
Matlab structure stored in file ‘echo_hand_params.mat’. (both can be found in
demo_files.zip archive)

a. Load parameters from file ‘echo_hand_params.mat’:

>> load echo_hand_params.mat

NOTE: Loaded structure consists of following parameters:

Parameter Unit/Type Description

c m/s Speed of sound in air at
room temperature

Freq Hz Frequency of ultrasound
(constant frequency
chirp assumed)

clk Hz PDM microphone data
capture clock

cnt - Number of chirps stored
in data file, number

http://sp.utia.cz

© 2018 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

8/11

must copy –c parameter
of capture_multichirp
application

filename string Filename where
captured data are
stored (not used in
provided Matlab scripts)

num double vector Bandpass filter
parameters for 40kHz
(for Matlab without
designfilt function)

den double vector

ao structure Holds parameters of
microphone array:
Coordinates of each
microphone and its
index to captured data

The ‘ao’ structure assumes following organization of microphone array and
coordinate system shown in Figure 4. Pairing of microphones and their PCB
labels can be found in Table 3.

Microphone coordinate system, numbering of mic ports from GEN1-9 side

D-SUB

x

y
ao position 1
x = -75,y = 75

ao position 2
x = -25,y = 75

ao position 4
x = -75,y = 25

ao position 16
x = 75,y = -75

Figure 4: Used microphone coordinate system

http://sp.utia.cz

© 2018 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

9/11

Table 3: Pairing of microphones in 'ao' structure with PCB labels and captured data array

Microphone
position from
Figure 4

PCB
Microphone
Label

Index to
captured
data array

1 MIC16 9

2 MIC12 11

3 MIC8 13

4 MIC4 15

5 MIC15 1

6 MIC11 3

7 MIC7 5

8 MIC3 7

9 MIC14 10

10 MIC10 12

11 MIC6 14

12 MIC2 16

13 MIC13 2

14 MIC9 4

15 MIC5 6

16 MIC1 8

b. Run Matlab script, for example:

>> [pcm chirp lim] =
show_but_array_waveimg_b('echo_hand.bin',p_hand,[17
60],figure(2));

This command uses data from ‘echo_hand.bin’, measurement parameters
from p_hand structure and displays in figure(2) echoes received from distance
starting with 17 cm and ending by 60 cm. Each captured chirp echo waveform
is shown as one row in image, thus 16 images are shown where horizontal
axis is time and vertical chirp number. See Figure 5. Function returns captured
PCM data in pcm variable, generated chirp waveform and limits as indices to
pcm array.

Alternatively, the function show_but_array_waveforms_b displays waveform

for one chirp only, see Figure 6. You can note that array records also emitted
chirp directly. As it is generated on middle speaker, each microphone records
it with different delay measured form board center. Also recorded volume of
the chirp is lower with higher distance from speaker.

http://sp.utia.cz

© 2018 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

10/11

Figure 5: Captured waveforms from multiple chirps. You can see echo of hand moving closer and farther
apart from the mic array. There can be also seen secondary echoes (path from speaker – hand – board –

hand again and board again). Vertical stripes are static echoes from equipment in the room within the
measured distance.

Figure 6: Captured waveforms from one chirp. Recorded amplitude decreases with distance from speaker

in the middle of the array, at the same time, delay increases proportionally.

http://sp.utia.cz

© 2018 ÚTIA AV ČR, v.v.i.

All disclosure and/or reproduction rights reserved

11/11

6 License

The demo package is provided by UTIA AV CR free of charge without sources except
example application. For the full version of the package please contact the author. The full
package is also free of charge available to SILENSE project partners.

7 Content of the packages

demo_files.zip

- Matlab Matlab scripts for processing of

 captured data

- sd_card TE0706 board SD card content

(petalinux and compiled capture

application)

demo_files_full.zip (additional folders)

- SDSoC_PFM_Archive Precompiled platform for Xilinx

 SDSoC tool

- sdx_import Example application project to be

 imported by SDSoC tool

8 References

[1] Silense project web pages: http://www.silense.eu

