

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved.

Application Note
http://sp.utia.cz

Arrowhead Client on ZynqBerry Device
Installation for Ubuntu 16.04 LTS

Lukáš Kohout
kohoutl@utia.cas.cz

Revision history

Rev. Date Author Description
0 25.03.2019 L. Kohout Initial version
1
2

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

ii

Contents

1 Introduction .. 1
2 Arrowhead Services ... 1
3 Hardware ... 2
4 PetaLinux 2018.2 ... 4
5 Debian for ARM ... 5
6 SD Card ... 6
7 BOOT.bin ... 7
8 Start ZynqBerry .. 8
9 Arrowhead Provider on ZynqBerry ... 9
10 Arrowhead Consumer on ZynqBerry ...10
11 Arrowhead Database ..12
12 Package content ...14
13 References ...14
Disclaimer ...15

Acknowledgement

This work has been partially supported from project Productive4.0, project number ECSEL
737459.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

1/15

1 Introduction
This application note describes an installation procedure of Arrowhead client on Zynq 7000
device. The concrete board is ZynqBerry, which is Zynq-7010 in Raspberry Pi form factor
board from Trenz Electronic [1]. The Zynq part consists of dual core 32-bits ARM Cortex-A9
processor and programmable logic in a single chip. The device runs Xilinx PetaLinux 2018.2
kernel with Debian 9.8 Stretch distribution (03.25.2019). The client acts as a Producer of a
service or as a Consumer requesting the service. The base hardware platform for the Zynq
device is compiled with Xilinx Vivado 2018.2 tool. The entire installation procedure has been
tested on Ubuntu 16.04 LTS host. To run and test Arrowhead client, it is required to have
running Arrowhead services.

2 Arrowhead Services
Testing and running the Arrowhead client require running Arrowhead services [2]. It is
recommended to use prepared image for Raspberry Pi 3 (RPi3). It includes Raspberian linux
distribution with already installed and configured Arrowhead framework G4.0 lightweight
implementation. The image is available as result of the work package WP1 of the running
ECSEL JU project Productive4.0 https://productive40.eu/. It is accessible for all consortium
project partners from the project ownClowd repository in section WP1, task 1.4. Please
contact coordinator of the consortium for further information about access to the image. The
image is zipped to 3 files Arrowhead-40-raspi.z01, Arrowhead-40-raspi.z02 and Arrowhead-
40-raspi.zip. To write image to the SD card follow these steps:

1. Unzip three downloaded zip files into one image file. The name of the image file is
image_180626.img.

2. Insert a micro SD card to the reader. The minimal size of the card should be 4 GB
and the card should be as fast as possible (class 10 for example). The speed of the
card strongly affects the speed of the running system as well as the time needed to
write the image to the card.

3. Write the image to the card. For the purpose, there is a tool within the Ubuntu
distribution called gnome-disks. From the PC terminal execute:
gnome-disks

4. In the left column of the tool, select the drive corresponding to the inserted card. From
the menu of the tool, select Restore Disk Image…

https://productive40.eu/

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

2/15

5. Select the image file to write (image_180626.img), and click on Start Restoring…
button. Confirm the restoration with your superuser password.

6. After writing is finished, plug the card to the RPi3 board.

7. Power the board on, the power supply is provided via micro USB cable. Connect it to
the PC or use a power adapter.

8. RPi3 provides its screen using HDMI connector, the resolution is 1920x1080p60. It
can be controlled with USB keyboard and mouse. The user is pi and password is
raspberry.

9. Connect the ethernet cable providing an internet connectivity and DHCP server.

10. To get the RPi3 board IP address use its terminal via HDMI screen and keyboard,
execute command:
ifconfig

It returns the listing similar to this:
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 10.42.0.141 netmask 255.255.255.0 broadcast 10.42.0.255
 inet6 fe80::ba27:ebff:fe6d:80eb prefixlen 64 scopeid 0x20<link>
 ether b8:27:eb:6d:80:eb txqueuelen 1000 (Ethernet)
 RX packets 77 bytes 9143 (8.9 KiB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 92 bytes 16200 (15.8 KiB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Alternatively, on user host machine execute:
sudo arp-scan --interface=eth0 –localnet

where eth0 is the ethernet interface of PC connecting subnet with ZynqBerry device.
This command returns all IP addresses within the subnet.

11. To shutdown the RPi3 properly use command:
sudo halt

3 Hardware
The hardware is compiled with Xilinx Vivado 2018.2 tool, the design is based on a board
support package provided by Trenz Electronic for ZynqBerry board.

1. Download the board support package for Xilinx tools in version 2018.2 from the Trenz
Electronic web page, choose package called zynqberrydemo1: http://www.trenz-
electronic.de/fileadmin/docs/Trenz_Electronic/Modules_and_Module_Carriers/special
/TE0726/Reference_Design/2018.2/zynqberrydemo1/te0726-zynqberrydemo1-
vivado_2018.2-build_03_20181120163939.zip.

2. Unpack the package, it will create zynqberrydemo1 folder.

http://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/Modules_and_Module_Carriers/special/TE0726/Reference_Design/2018.2/zynqberrydemo1/te0726-zynqberrydemo1-vivado_2018.2-build_03_20181120163939.zip
http://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/Modules_and_Module_Carriers/special/TE0726/Reference_Design/2018.2/zynqberrydemo1/te0726-zynqberrydemo1-vivado_2018.2-build_03_20181120163939.zip
http://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/Modules_and_Module_Carriers/special/TE0726/Reference_Design/2018.2/zynqberrydemo1/te0726-zynqberrydemo1-vivado_2018.2-build_03_20181120163939.zip
http://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/Modules_and_Module_Carriers/special/TE0726/Reference_Design/2018.2/zynqberrydemo1/te0726-zynqberrydemo1-vivado_2018.2-build_03_20181120163939.zip

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

3/15

NOTE: Inside the package there are bash scripts without permissions for execution.
Before using them, change their permissions by command:
chmod ugo+x sript_name

3. On PC, open linux terminal window, go to the zynqberrydemo1 folder and create an
initial setup:
cd zynqberrydemo1
chmod ugo+x _create_linux_setup.sh
./_create_linux_setup.sh

It will create 3 scripts: design_basic_settings.sh, vivado_create_project_guimode.sh
and vivado_open_existing_project_guimode.sh.

4. Select the board version you own, in our case it is te0726-03m (see the content of the
zynqberrydemo1/board_files/TE0726_board_files.csv file).

In design_basic_settings.sh script locate the line containing
PARTNUMBER= LAST_ID

and change it to
PARTNUMBER=3

5. Start the Xilinx Vivado 2018.2 and create the design, use the script:
chmod ugo+x design_basic_settings.sh
chmod ugo+x vivado_create_project_guimode.sh
./vivado_create_project_guimode.sh

The figure shows block design of the created system.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

4/15

6. Build the design, use TCL script provided within the board support package. From the
Vivado TCL console execute command:
TE::hw_build_design -export_prebuilt

After the compilation, a hardware description file (HDF) will be located in folder
zynqberrydemo1/prebuilt/hardware/m.

NOTE: Keep the Vivado tool running for the future steps.

4 PetaLinux 2018.2
Modify the PetaLinux 2018.2 distribution to have kernel image and its file system on separate
partitions of the SD card.

1. On PC open linux terminal window and set path to PetaLinux 2018.2 tool (modify the
path if necessary):
source /opt/petalinux/petalinux-v2018.2-final/settings.sh

2. Go to the folder with PetaLinux, it already contains a prepared configuration
according to ZynqBerry board requirements.
cd zynqberrydemo1/os/petalinux

3. Copy precompiled HDF to the zynqberrydemo1/os/petalinux folder.
cp -f ../../prebuilt/hardware/m/zynqberrydemo1.hdf .

4. Load the HDF to current PetaLinux configuration.
petalinux-config --get-hw-description . -p .

5. Change the PetaLinux filesystem location from the ramdisk to the extra partition on
the SD card, select:
Image Packaging Configuration --->
 Root filesystem type (SD card) --->

Optionally, the option Copy final images to tftpboot can be switched off.
Leave the configuration, 3x Exit and Yes.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

5/15

6. Build PetaLinux, from the bash terminal execute
petalinux-build

7. Copy image.ub and u-boot.elf files to the zynqberrydemo1/prebuilt/os/petalinux/
default folder
cp -f images/linux/image.ub ../../prebuilt/os/petalinux/default/image.ub
cp -f images/linux/u-boot.elf ../../prebuilt/os/petalinux/default/u-boot.elf

5 Debian for ARM
The file system is based on the latest stable version of Debian 9.8 Stretch distribution (03.
25. 2019). The precompiled image file can be found in the te0726-arrohead-
client/debian/te0726-debian.img.zip file. For those who want to create their own image follow
the steps below, otherwise skip this section a go to directly to section 6.

1. From the package te0726-arrowhead-client/debian copy mkdebian.sh file to the
PetaLinux folder.
cp –f te0726-arrohead-client/debian/mkdebian.sh \
 zynqberrydemo1/os/petalinux/mkdebian.sh

2. Go to the folder with PetaLinux:
cd zynqberrydemo1/os/petalinux

3. Debian image is created with mkdebian.sh script. The script checks all the tools that
are needed to create the image, most of them are a standard part of the Ubuntu
16.04 LTS distribution. When some of them are missing, install them.
sudo apt install package_of_the_missing_tool

Next table summarizes all the tools with a corresponding package name.

Tool Package
dd coreutils
losetup mount
parted parted
lsblk util-linux

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

6/15

Tool Package
mkfs.vfat dosfstools
mkfs.ext4 e2fsprogs
debootstrap debootstrap
gzip gzip
cpio cpio
chroot coreutils
apt-get apt
dpkg-reconfigure debconf
sed sed
locale-gen locales
update-locale locales
qemu-arm-static qemu-user-static

4. Create the image with Debian, it will consist of two partitions. The file system of the
first one will be FAT32, this partition is dedicated for image of the PetaLinux kernel.
The second partition will contain the Debian using EXT4 file system.
chmod ugo+x mkdebian.sh
sudo ./mkdebian.sh

During the creation procedure, you will be asked to set language, choose English
(US). The resultant image file will be called te0726-debian.img, its size will be 7 GB.
This step can take much time, it depends on the host machine speed and speed of

the internet connection. Precompiled image can be found in the te0726-arrohead-
client/debian/te0726-debian.img.zip file.

6 SD Card
1. Insert a micro SD card to the reader. The minimal size of the card should be 8 GB

and the card should be as fast as possible (class 10 for example). The speed of the

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

7/15

card strongly affects the speed of the running system (PetaLinux kernel with Debian)
as well as the time needed to write the image to the card.

2. On PC go to the folder with PetaLinux:
cd zynqberrydemo1/os/petalinux

3. Write the image to the card. For the purpose, there is a tool within the Ubuntu
distribution called gnome-disks.
gnome-disks

4. In the left column of the tool, select the drive corresponding to the inserted card. From
the menu of the tool, select Restore Disk Image…

5. Select the image file to write, zynqberrydemo1/os/petalinux/te0726-debian.img and
click on Start Restoring… button. Confirm the restoration with your superuser
password.

6. After writing is finished, plug the card to the ZynqBerry board.

7 BOOT.bin
1. Go back to the Vivado tool.

2. Create BOOT.bin file. From the Vivado TCL console execute command:
TE::sw_run_hsi

The resultant file will be located in zynqberrydemo1/prebuilt/boot_images/m/u-boot/
folder.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

8/15

3. Start Xilinx SDK. From the Vivado TCL console execute command:
TE::sw_run_sdk

4. Connect ZynqBerry board with your PC via micro USB cable. It provides the power
supply and the programming interface.

5. Write BOOT.bin file to ZynqBerry FLASH memory to enable booting the board. From
the SDK menu select Xilinx→Program Flash. Select image to write, browse to
zynqberrydemo1/prebuilt/boot_images/m/u-boot/BOOT.bin. Select FSBL file, browse
to zynqberrydemo1/workspace/hsi/zynq_fsbl_flash/executable.elf. Click on Program
button.

6. Close SDK, close Vivado.

8 Start ZynqBerry
1. Connect or reconnect ZynqBerry board with your PC via micro USB cable. ZynqBerry

starts its booting sequence.

2. To see the booting sequence or to control ZynqBerry device, use the serial terminal
connected via micro USB cable. On PC, there can be used putty tool for instance.
The settings of the serial terminal are in the table below.

Parameter Value
Speed 115200
Data bits 8
Stop bits 1
Parity None
Control Flow None

3. Login: root/root

4. Get or set an IP address of the ZynqBerry.

a. In case the ZynqBerry board is connected to the network that provides DHCP
(preferred), from the serial terminal command line execute:
ifconfig

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

9/15

It returns the listing similar to this:
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.42.0.103 netmask 255.255.255.0 broadcast 10.42.0.255
inet6 fe80::20a:35ff:fe00:1e53 prefixlen 64 scopeid 0x20<link>
ether 00:0a:35:00:1e:53 txqueuelen 1000 (Ethernet)

Or on user host machine execute:
sudo arp-scan --interface=eth0 –localnet

where eth0 is the ethernet interface of PC connecting subnet with ZynqBerry
device. This command returns all IP addresses within the subnet.

b. When DHCP is not provided set the local address manually. From the serial
terminal command line execute:
ifconofig eth0 10.42.0.103

5. Use SFTP to copy installation script to the ZynqBerry, from PC command line
execute:
cd te0726-arrohead-client/zynq
sftp root@10.42.0.103 <<< $'put install-arrohead-cli-dep.sh'

The script will be copied to /root/ folder on the ZynqBerry board.

6. Install dependencies required by the Arrowhead client compilation, from the
ZynqBerry command line (SSH or serial terminal) execute:
cd /root
chmod ugo+x install-arrohead-cli-dep.sh
./install-arrohead-cli-dep.sh

7. Zynqberry provides the Debian desktop screen using HDMI connector, the resolution
is 1280x720p60. It can be controlled with USB keyboard and mouse. To start the
desktop, execute from the terminal:
startx&

8. To properly shutdown the Zynqberry board, use command halt before the power off. It
avoids unfinished writes to the filesystem on the SD card.

9 Arrowhead Provider on ZynqBerry
To control the ZynqBerry device, use SSH (preferred) or serial terminal.

1. Get the arrowhead client source codes. The sources include C++ version of the
Arrowhead Provider and Client skeletons.
cd /root
git clone https://github.com/arrowhead-f/client-cpp

2. Compile Arrowhead Provider.
cd client-cpp/ProviderExample
make

3. Configure the Provider, the name of the configuration file is
ApplicationServiceInterface.ini.
mcedit ApplicationServiceInterface.ini

https://github.com/arrowhead-f/client-cpp

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

10/15

The configuration file consists of the following items.
• sr_base_uri – an address of the Arrowhead registration service running in

insecure mode, in our case it is the RPi3 IP address with port 8440.
• sr_base_uri_https – an address of the Arrowhead registration service running

in secure mode, in our case it is the RPi3 IP address with port 8441.
• port – a port number where the Provider will be available on, set 8000.
• address – Provider IP address, ZynqBerry IP.
• Address6 - Provider IP address in IPV6

The configuration file example:
[Server]
sr_base_uri="http://10.42.0.141:8440/serviceregistry/"
sr_base_uri_https="https://10.42.0.141:8441/serviceregistry/"
port="8000"
address="10.42.0.103"
address6="[fe80::483b:e5ff:fe7f:610d]"

Safe the file (F2) and exit the editor (F10).

4. Start the Provider
./ProviderExample

The Provided registers itself in the Arrowhead framework database, on Consumer
request, it returns artificial temperature, it is fixed value 26 degrees of Celsius.

10 Arrowhead Consumer on ZynqBerry
For the testing purpose, the Arrowhead Consumer can be compiled and run from the same
ZynqBerry device as the Provider.

1. Compile Arrowhead Consumer.
cd /root/client-cpp/ConsumerExample
make

2. Configure the Consumer, there are two configuration files, OrchestratorInterface.ini
and consumedServices.json.

a. OrchestratorInterface.ini
mcedit OrchestratorInterface.ini

The configuration file consists of the following items.
• or_base_uri – an address of the Arrowhead orchestrator service

running in insecure mode, in our case it is the RPi3 IP address with
port 8440.

• sr_base_uri_https – an address of the Arrowhead orchestrator service
running in secure mode, in our case it is the RPi3 IP address with port
8441.

• port – a port number where the Consumer will be available on, set
8002.

• address – Consumer IP address, ZynqBerry IP.
• address6 - Consumer IP address in IPV6

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

11/15

The configuration file example:
[Server]
or_base_uri="http://10.42.0.141:8440/orchestrator/orchestration"
or_base_uri_https="https://10.42.0.141:8441/orchestrator/orchestration"
port="8002"
address="10.42.0.103"
address6="[fe80::483b:e5ff:fe7f:610d]"

Safe the file (F2) and exit the editor (F10).

b. consumedServices.json
mcedit consumedServices.json

Modify the following items in the file:
• requestForm/requesterSystem/port – Number of the Consumer port.
• requestedService/serviceMetadata/security – change string ”token” to

empty string ””.
• preferredProviders/providerSystem/address – Preferred Provider IP

address.
• preferredProviders/providerSystem/port – Port number, where the

preferred Provider listen on.

This configuration file should look like this:

{
 "consumerID": "TestconsumerID",
 "requestForm": {
 "requesterSystem": {
 "systemName": "client1",
 "address": "dontcare",
 "port": 8002,
 "authenticationInfo": "null"
 },
 "requestedService": {
 "serviceDefinition": "IndoorTemperature_ProviderExample",
 "interfaces": ["REST-JSON-SENML"],
 "serviceMetadata":{
 "security" : ""
 }
 },
 "orchestrationFlags": {
 "overrideStore" : true,
 "matchmaking" : true,
 "metadataSearch" : false,
 "pingProviders" : false,
 "onlyPreferred" : true,
 "externalServiceRequest" : false
 },
 "preferredProviders": [{
 "providerSystem":{
 "systemName": "SecureTemperatureSensor",
 "address": "10.42.0.103",
 "port":"8000"
 }
 }]
 }
}

Save the file (F2) and exit the editor (F10).

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

12/15

3. Run the Consumer
./ConsumerExample

The program should show the response from the Provider and exit.
Provider Response:
{"e":[{"n": "this_is_the_sensor_id","v":26.0,"t": "1553675692"}],"bn":
"this_is_the_sensor_id","bu": "Celsius"}

If it fails, the database of the Arrowhead framework has to be modified. To fix it, follow
steps in Section 11.

11 Arrowhead Database
The Arrowhead framework running on RPi3 provides phpMyAdmin to control its database. To
allow the Consumer to get the Producer service response, follow next steps.

1. On your PC start web browser and go to RPi3 phpMyAdmin web page,
http://10.42.0.141/phpmyadmin (use IP address of your RPi3). User name is root,
password is root.

2. Get an ID of the Producer. Select table arrowhead_test_cloud_1→arrowhead_system
and locate the line containing the IP address of the ZynqBerry with system_name
SecureTemperatureSensor. In our case the ID is 5.

3. Get an ID of the Consumer. Select table arrowhead_test_cloud_1→
arrowhead_system and locate the line containing system_name client1. In our case it
is 7.

4. Get an ID of the Producer service. Select table arrowhead_test_cloud_1→
arrowhead_service and locate the line containing service_definition called
IndoorTemperature_ProviderExample. In our case the ID is 55.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

13/15

In table service_registry it can be checked, that the Provider is linked with its service.

5. Link the Provider, its service and the Consumer together. In table
intra_cloud_authorization add a new line containing consumer_system_id 7,
provider_system_id 5 and arrowhead_service_id 55. Now the Consumer should get
the proper response from the Provider.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

14/15

12 Package content
.
├── debian
│ ├── mkdebian.sh
│ └── te0726-debian.img.zip
└── zynq
 └── install-arrohead-cli-dep.sh

13 References
[1]. Trenz Electronic, "TE0726 TRM," [Online].

Available: https://wiki.trenz-electronic.de/display/PD/TE0726+TRM
[2]. Documents for Arrowhead Framework," [Online].

Available: https://forge.soa4d.org/docman/?group_id=58

https://wiki.trenz-electronic.de/display/PD/TE0726+TRM
https://forge.soa4d.org/docman/?group_id=58

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

15/15

Disclaimer
This disclaimer is not a license and does not grant any rights to the materials distributed
herewith. Except as otherwise provided in a valid license issued to you by UTIA AV CR v.v.i.,
and to the maximum extent permitted by applicable law:

(1) THIS APPLICATION NOTE AND RELATED MATERIALS LISTED IN THIS PACKAGE
CONTENT ARE MADE AVAILABLE "AS IS" AND WITH ALL FAULTS, AND UTIA AV CR
V.V.I. HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED,
OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR
PURPOSE; and

(2) UTIA AV CR v.v.i. shall not be liable (whether in contract or tort, including negligence, or
under any other theory of liability) for any loss or damage of any kind or nature related to,
arising under or in connection with these materials, including for any direct, or any indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill,
or any type of loss or damage suffered as a result of any action brought by a third party)
even if such damage or loss was reasonably foreseeable or UTIA AV CR v.v.i. had been
advised of the possibility of the same.

Critical Applications:
UTIA AV CR v.v.i. products are not designed or intended to be fail-safe, or for use in any
application requiring fail-safe performance, such as life-support or safety devices or systems,
Class III medical devices, nuclear facilities, applications related to the deployment of airbags,
or any other applications that could lead to death, personal injury, or severe property or
environmental damage (individually and collectively, "Critical Applications"). Customer
assumes the sole risk and liability of any use of UTIA AV CR v.v.i. products in Critical
Applications, subject only to applicable laws and regulations governing limitations on product
liability.

	1 Introduction
	2 Arrowhead Services
	3 Hardware
	4 PetaLinux 2018.2
	5 Debian for ARM
	6 SD Card
	7 BOOT.bin
	8 Start ZynqBerry
	9 Arrowhead Provider on ZynqBerry
	10 Arrowhead Consumer on ZynqBerry
	11 Arrowhead Database
	12 Package content
	13 References
	Disclaimer

