

Akademie věd České republiky Ústav teorie informace a automatizace AV ČR, v.v.i.

Arrowhead Compatible Zynq with SDSoC 2017.4 and Floating-Point 8xSIMD EdkDSP Accelerators

Supported Trenz Electronic Modules: TE0720-03-2IF, TE0720-03-1QF, TE0720-03-14S-1C, TE0720-03-1CFA Supported Trenz Electronic Carrier Boards: TE0703-05, TE0706-02

Jiří Kadlec, Zdeněk Pohl, Lukáš Kohout

<u>kadlec@utia.cas.cz</u>, <u>xpohl@utia.cas.cz</u>, <u>kohoutl@utia.cas.cz</u> phone: +420 2 6605 2216 UTIA AV CR, v.v.i.

Revision history:

Rev.	Date	Author	Description
1	12.01.2018	Jiří Kadlec	Initial internal draft for the Productive 4.0 consortiummeeting17-18.1.2018For Vivado and SDK ver. 2017.1
2	30.01.2018	Jiří Kadlec	Demonstrator description prior to the Productive 4.0 project conference in Athens 6-7.3.2018 For Vivado and SDK ver. 2017.1.
3	15.05.2018	Jiří Kadlec	Revision for Vivado and SDK ver. 2017.4.1 Supported Trenz Electronic Zynq modules: TE0720-03-2IF, TE0720-03-1QF, TE0720-03-14S-1C Supported Trenz Electronic Carrier Boards: TE0703-05, TE0706-02
4	18.05.2018	Jiří Kadlec	Added board line description and licensing conditions for the development package.
5	24.05.2018	Jiří Kadlec	Added support for TE0720-03-1CFA-S starter kit
6	05.04.2019	Jiri Kadlec	Support for Debian and Arrowhead framework G4.0 on RaspberryPi 3B (lite installation) C++ Clients: Producer and Consumer running on Zynq TE0720 devices.
7	09.05.2019	Jiri Kadlec	V2: Updated Fig. 36. Evaluation package includes Image of SD card with Debian for TE0720-03-2IF with SDSoC te06_I application, Arrowhead Producer and Consumer.

Acknowledgements:

This work has been partially supported by ECSEL JU project Productive4.0 No. 737459.

Table of Contents

Arrowhead Compatible Zynq with SDSoC 2017.4 and Floating-Point 8xSIMD EdkDSP Accelerators Supported Trenz Electronic Modules: TE0720-03-2IF, TE0720-03-1QF, TE0720-03-14S-1C, TE0720-03-1CFA Supported Trenz Electronic Carrier Boards: TE0703-05, TE0706-02
1. EdkDSP IP Core - Introduction
2. Implementation Details
3. EdkDSP IP Core – PicoBlaze6 C Application Interface Functions12
4. EdkDSP IP Core – MicroBlaze C Application Interface Functions13
5. EdkDSP IP Core – Integration with dual core ARM A9 Linux18
6. Setup of Hardware19
7. Reference Application for the 8xSIMD EdkDSP IP Core23
8. Installation and Use of Base Evaluation Package25
9. Installation and Use of Debug Evaluation Package40
10. Installation of Arrowhead Framework Support55
HW configuration with simple arrowhead client example55
Installation of arrowhead framework services on RPi356
Install Debian immage on SD card for the Zynq board57
Install Arrowhead-f support on zynq
Install arrowhead-f C++ provider on Zynq57
Install arrowhead-f C++ consumer on Zynq58
Modification of arrowhead database
Test the Zynq consumer and producer
Producer with real temperature measurement on zynq
Conclusions
11. Data Lines on TE0703-05 and TE0706-02 Carrier Boards68
12. References71
13. Base Release Evaluation Package72
14. Extended Debug Evaluation Package for PRODUCTIVE 4.0 partners73
Disclaimer75

2/75

http://zs.utia.cas.cz

Table of Figures

Figure 1: TE0703-05 carrier board with TE0720-03-14S-1C Zynq module	5
Figure 2: SDSoC compatible Zynq system with 8xSIMD EdkDSP floating point accelerator	6
Figure 3: 8xSIMD EdkDSP floating point accelerator IP core with System ILA	9
Figure 4: Internal details of (8xSIMD) EdkDSP floating point accelerator IP core	. 10
Figure 5: TE0706-02; TE0720-03-14S-1C; USBUART and XMOD FTDI JTAG adapter	. 19
Figure 6: TE0706-02 Carrier Board	. 21
Figure 7: TE0703-05 Carrier Board	. 22
Figure 8: Release demo t01_s. ARM and 8xSIMD EdkDSP terminal output	. 30
Figure 9: Release demo t01_s. Vivado Lab Tool is open	. 31
Figure 10: Release demo t01_s. Probes file is specified. Trigger conditions are set.	. 32
Figure 11: Release demo t01_s. Details of the 8xSIMD EdkDSP LMS filter computation	. 33
Figure 12: Release demo t01_s. Details of the 8xSIMD EdkDSP FIR filter computation	. 34
Figure 13: Release demo t01_s. Standalone demo supports measurements of the chip temperature.	. 35
Figure 14: Release demo t01_I. Linux start	. 37
Figure 15: Release demo t01_l; Login, Compilation of firmware in the EdkDSP C Compiler	. 38
Figure 16: Release demo t01_l; Program and start 8xSIMD EdkDSP demo	. 39
Figure 17: Create new SDK 2017.4.1 workspace.	. 41
Figure 18: Import the extended debug evaluation package projects into the SDK Workspace	. 42
Figure 19: SDK compiles MicroBlaze SW projects for the standalone debug target	. 43
Figure 20: Debug demo t01_l; Execution of the ./t01_s.elf example from the SD card	. 44
Figure 21: Debug demo t01_s; Open project edkdsp_fp12_1x8_s for debug	. 44
Figure 22: Debug demo t01_s; Start the free-run from the debugger.	. 45
Figure 23: Debug demo t01_s. Arm started EdkDSP and runs SDSoC akcelerátor demo	. 45
Figure 24: Debug demo t01_s; MicroBlaze project output (Compiled for Debug)	. 46
Figure 25: Compiled EdkDSP firmware. Started debug demo - Linux target t01_l.	. 48
Figure 26: Select MicroBlaze project edkdsp_fp12_1x8_I for debug	. 49
Figure 27: Select free run of MicroBlaze project edkdsp_fp12_1x8_I	. 50
Figure 28: Output from ARM MicroBlaze fort t01_I. Compiled EdkDSP firmware	. 51
Figure 29: Create BOOT.bin for the t01_s demo	. 52
Figure 30: Create BOOT.bin for the t01_I demo	. 53
Figure 31: Zynq module (TE0720-14S on TE0706-02 carrier) with Debian an AH 4.0 Client	. 55
Figure 32: The RaspberryPi 3 will boot from the SD card image with text output to the HDMI monitor	56
Figure 33: phpMyAdmin interface of the Arrowhead Database	. 60
Figure 34: The intra_cloud_authorization table of the Arrowhead Database	. 61
Figure 35: Modifications of ProviderExample.cpp C to measure temperature of the Zynq chip	. 65
Figure 36: ProviderExample and ConsumerExample clients on Zyng	. 66
Figure 37: Connection of PCBs data lines to connectors on TE0703-05 carrier board	. 68
Figure 38: Connection of PCBs data lines to connectors on TE0706-02 carrier board	. 69

3/75

http://zs.utia.cas.cz

Table of Tables

Table 1: Parameters of supported Zyng modules.	6
Table 2: (8xSIMD) EdkDSP bce_fp12_1x8_40 accelerator vector operations	8
Table 3: PicoBlaze6 ports forming VLIW instruction for the 8xSIMD EdkDSP data flow unit	. 11
Table 4: PicoBlaze6 precompiled support functions	. 12
Table 5: MicroBlaze access names to 8xSIMD EdkDSP memory banks	. 13
Table 6: MicroBlaze WAL error codes	. 13
Table 7: MicroBlaze API functions for communication with 8xSIMD EdkDSP IP core	. 13
Table 8: Organisation of DDR3 memory	. 18
Table 9: Connection of USBUART to TE0706-02	. 20
Table 10: Connection of USBUART to TE0703-05	. 20
Table 11: Requirements and results.	. 24
Table 12: Description of ARM SDSoC acceleration examples compatible with 8xSIMD EdkDSP IP	. 26
Table 13: Common Connections of Zyng pins to TE0703-05 and TE0706-02 PCB Data Lines	. 70

4/75

http://zs.utia.cas.cz

Akademie věd České republiky Ústav teorie informace a automatizace AV ČR, v.v.i.

1. EdkDSP IP Core - Introduction

This report describes design of compact HW system based on Zynq all programmable 28nm chip with one or two Arm A9 processors and programmable logic area. System is optimised for Ethernet connected computing nodes serving for industrial automation, local data processing and data communication. The documented HW architecture is one of candidates for wider use within the ECSEL Productive 4.0 project for the edge computing node in the Industry 4.0 solutions. 2 carrier boards and 3 Zynq modules from Trenz Electronic are supported.

The demonstrated Zynq systems include the run-time reprogrammable 8xSIMD EdkDSP IP core. It combines the MicroBlaze and the floating point single instruction multiple data (SIMD) data flow unit (DFU). The SIMD DFU is controlled by a run-time reprogrammable finite state machine implemented by Xilinx PicoBlaze6 8 bit controller with dedicated embedded (on Zynq executed) C compiler.

The application note describes the installation of the HW system, the SW API, algorithmic implementation and mapping to the 8xSIMD EdkDSP IP. Presented HW system is also compatible with the Xilinx SDSoC 2017.4.1 design environment. The SDSoC is supporting automated compilation of user-defined C/C++ ARM functions into HW accelerators with several types of data movers (zero-copy, DMA, SG-DMA) and the automated integration of generated accelerators as an ARM Linux operating system or standalone application.

Debian image is provided for the Zynq board in format of image for the SD card. Chapter 10 describes simple installtion of additional SW packages and templates to get compatibility with Arrowhead framework G4.0 Java services. These services run together with the Arrowhead database on a separate RaspberryPi 3B board and form example of an Arrowhead local cloud. See *Figure 32*.

Figure 1: TE0703-05 carrier board with TE0720-03-14S-1C Zynq module

5/75

ŪTIA

signal processing

© 2018 ÚTIA AV ČR, v.v.i. All disclosure and/or reproduction rights reserved

2. Implementation Details

Figure 2: SDSoC compatible Zynq system with 8xSIMD EdkDSP floating point accelerator.

Evaluation system parameters

The evaluation system supports two Trenz Electronic carrier boards (**TE0703-05** and **TE0706-02**) [3] and three types of Trenz Electronic Zynq modules [1]:

- **TE0720-03-2IF** is an industrial grade (Tj = -40°C to +100°C) module, speed 2 with dual core Arm A9. The dual core Arm A9 and the PL part are **faster** in comparison to the other two modules.
- **TE0720-03-1QF** is an automotive grade (Tj = -40°C to +125°C) module, speed 1 with dual core Arm A9. This module can be used in applications requiring **wide temperature range**. Module is more expensive.
- **TE0720-03-14S-1C** is a commercial grade (Tj = 0°C to +85°C) module, speed 1 with **single core** Arm Cortex A9 and reduced programmable logic (PL) size. This is **low cost module** suitable for cost sensitive applications.
- TE0720-03-1CFA-S is a commercial grade (Tj = 0°C to +85°C) module, speed 1 with dual core Arm Cortex A9. This is assembled starter kit with the TE0720-03-1CFA module, heat sink, TE0703-05 carrier board, USB cable, SD card and the 5V/4A power supply.

Main parameters of these modules are summarised in Table 1.

Module	Xilinx Zynq device	ARM A9	A9 clock	Slices	LUTs	REGs	BRAMs	DSPs
TE0720-03-2IF	XC7Z020-2CLG484I	2x	766MHz	13300	53200	106400	140	220
TE0720-03-1QF	XA7Z020-1CLG484Q	2x	666MHz	13300	53200	106400	140	220
TE0720-03-14S-1C	XC7Z014S-1CLG484C	1x	666MHz	13300	40600	81200	107	170
TE0720-03-1CFA	XC7Z020-1CLG484C	2x	666MHz	13300	53200	106400	140	220

6/75

Table 1: Parameters of supported Zynq modules.

The PL part of the 28nm Zynq device contains:

- The run-time reprogrammable 8xSIMD EdkDSP floating point IP Core. It is using 120 MHz clock in case of the faster TE0720-03-2IF module and 100 MHz clock in case of the other two modules.
- MicroBlaze 32 bit soft core processor operating at 100 MHz.
- One of HW accelerators generated in Xilinx SDSoC 2017.4.1 from C/C++ reference SW ARM A9 function and operating with 150 MHz, 120 MHz, 100 MHz or 50 MHz clock.

The EdkDSP IP Core is 8xSIMD floating point accelerator. It is reprogrammable in runtime by change of firmware of a PicoBlaze6 8bit controller. The PicoBlaze6 controller schedules vector operations performed in the 8xSIMD floating point data paths. The PicoBlaze6 controller serves as re-programmable finite state machine (FSM). It is programmed by firmware compiled by an EdkDSP C Compiler and Assembler.

The EdkDSP C Compiler and Assembler are implemented as application programs running on the embedded PetaLinux 2017.4.1 operating system. The 8xSIMD EdkDSP IP is controlled by the 32bit MicroBlaze processor.

The MicroBlaze runs programs from the DDR3 memory. The DDR3 is interfaced by an Instruction and Data cache (32k x 32bit) with HP0 AXI interface.

The 8xSIMD EdkDSP IP is connected to the MicroBlaze by local dual-ported memories. MicroBlaze implements data communication from DDR3 to 8xSIMD EdkDSP dual-ported memories in software. This communication is performed in parallel with the 8xSIMD parallel floating point computation in the 8xSIMD EdkDSP IP.

Parameters of the 8xSIMD EdkDSP IP core

8x SIMD EdkDSP floating point accelerator IP core supports 8xSIMD vector floating point operations performed from/to dual-ported BRAMs A, B, Z. Each dual-ported BRAM has 8 parallel layers of 1024 32 bit words. The set of supported floating point operations is different for different grades [10|20|30|40] of the 8xSIMD EdkDSP accelerator IPs. The supported floating point operations are summarised in Table 2.

- The accelerator **bce_fp12_1x8_0_axiw_v1_10** is area **optimized** and supports only data transfers and vector floating point operations FPADD, FPSUB in 8 SIMD data paths.
- The accelerator **bce_fp12_1x8_0_axiw_v1_20** performs identical operations as bce_fp12_1x8_0_axiw_v1_10 plus the vector floating point MAC operations in 8 SIMD data paths. MAC is supported for length of vectors 1 up to 10. This accelerator is optimized for applications like floating point matrix multiplication with one row and column dimensions <= 10.
- The accelerator bce_fp12_1x8_0_axiw_v1_30 supports identical operations as bce_fp12_1x8_0_axiw_v1_20 plus HW-accelerated computation of the floating point vector-by-vector dotproduct operators performed in 8 SIMD data paths. It is optimized for parallel computation of up to 8 FIR or LMS filters, each with size up to 250 coefficients. It is also efficient in case of floating point matrix by matrix multiplications, where one of the dimensions is large (in the range from 11 to 250).
- The accelerator **bce_fp12_1x8_0_axiw_v1_40** supports identical operations as bce_fp12_1x8_0_axiw_v1_30 plus an additional HW support of dot product. It is computed in 8 data paths with HW-supported wind-up into single scalar result propagated into all SIMD planes.

All **bce_fp12_1x8_0_axiw_v1_[10|20|30|40]** accelerators support single data path for pipelined, floating-point division operations with vector operands taken from the first SIMD plain and the result is propagated into all 8 SIMD plains.

All **bce_fp12_1x8_0_axiw_v1_[10|20|30|40]** accelerators are suitable for applications like adaptive normalised LMS and NLMS filters and square root free versions of adaptive RLS QR filters and adaptive RLS LATTICE filters.

7/75

Table 2: (8xSIMD) EdkDSP bce_fp12_1x8_40 accelerator vector operations.

Name in MicroBlaze C value (dec)	8xSIMD Floating point Operation
WAL BCE JK VVER	= 0	Return capabilities of the (8xSIMD) EdkDSP accelerator
WAL_BCE_JK_VZ2A	= 1	8xSIMD copy $a_m[i] \le z_m[i]; m=18$ IP core: 10,20,30,40
WAL_BCE_JK_VB2A	= 2	8xSIMD copy a _m [i] <= b _m [j]; m=18 IP core: 10,20,30,40
WAL_BCE_JK_VZ2B	= 3	8xSIMD copy b _m [i] <= z _m [j]; m=18 IP core: 10,20,30,40
WAL_BCE_JK_VA2B	= 4	8xSIMD copy b _m [i] <= a _m [j]; m=18 IP core: 10,20,30,40
WAL_BCE_JK_VADD	= 5	8xSIMD add z _m [i] <= a _m [j] + b _m [k]]; m=18 IP core: 10,20,30,40
WAL_BCE_JK_VADD_BZ2A	= 6	8xSIMD add a _m [i] <= b _m [j] + z _m [k]]; m=18 IP core: 10,20,30,40
WAL_BCE_JK_VADD_AZ2B	= 7	8xSIMD add b _m [i] <= a _m [j] + z _m [k]]; m=18 IP core: 10,20,30,40
WAL_BCE_JK_VSUB	= 8	8xSIMD sub z _m [i] <= a _m [j] - b _m [k]; m=18 IP core: 10,20,30,40
WAL_BCE_JK_VSUB_BZ2A	= 9	8xSIMD sub $a_m[i] \le b_m[j] - z_m[k]; m=18$ IP core: 10,20,30,40
WAL_BCE_JK_VSUB_AZ2B	= 10	8xSIMD sub $b_m[i] \le a_m[j] - z_m[k]; m=18$ IP core: 10,20,30,40
WAL_BCE_JK_VMULT	= 11	8xSIMD mult $z_m[i] \le a_m[j] * b_m[k]; m=18$ IP core: 10,20,30,40
WAL_BCE_JK_VMULT_BZ2A	= 12	8xSIMD mult a _m [i] <= b _m [j] * z _m [k]; m=18 IP core: 10,20,30,40
WAL_BCE_JK_VMULT_AZ2B	= 13	8xSIMD mult b _m [i] <= a _m [j] * z _m [k]; m=18 IP core: 10,20,30,40
WAL_BCE_JK_VPROD	= 14	8xSIMD vector products: IP core: 30,40
		z _m [i] <= a _m '[jj+nn]*b _m [kk+nn]; m=18; nn range 1255
	- 15	
WAL_BCE_JK_VIVIAC	= 15	8XSIVID Vector MACS: IP core: 20,30,40
		$Z_{m}[11+nn] \le Z_{m}[11+nn] + a_{m}[11+nn] + D_{m}[K]K+nn];$
WAL BCE IK VMSUBAC	= 16	Sind votor MSURACe IP core: 20.20.40
WAL_DEL_M_WIGODAC	- 10	z [i i+nn] $z = z$ [i i+nn] z [i i+nn] * h [k ik+nn].
		$2_{m[1,.1,1,1]} < 2_{m[1,.1,1,1]} = a_{m[1,.1,1,1]} = 0_{m[X,.1,X,1,1,1]}$
WAL BCF IK VPROD S8	= 17	8xSIMD vector product (extended) IP core: 40
		$z_{m}[i] \le ((a_{1}'[i_{1}i+nn]*b_{1}[k_{1}k+nn]+a_{2}'[i_{1}i+nn]*b_{2}[k_{1}k+nn])$
		$+ (a_3'[ii+nn]*b_3[kk+nn]+a_4'[ii+nn]*b_4[kk+nn]))$
		+
		((a ₅ '[jj+nn]*b ₅ [kk+nn]+a ₆ '[jj+nn]*b ₆ [kk+nn])
		+ (a ₇ '[jj+nn]*b ₇ [kk+nn]+a ₈ '[jj+nn]*b ₈ [kk+nn]));
		m=18; nn range 1255
WAL_BCE_JK_VDIV	= 20	vector division (extended) IP core: 10,20,30,40
		z _m [i] <= a ₁ [j] / b ₁ [k]; m=18

8/75

Ports of the 8xSIMD EdkDSP accelerator

- bce_atoa[0:9] Memory A address (addressing 1024 32 bit floating point values)
 - bce_atob[0:9] Memory B address (addressing 1024 32 bit floating point values)
 - bce_atoz[0:9] Memory Z address (addressing 1024 32 bit floating point values)
- bce_done[0:7] Vector operation in progress or finished
- bce_led4b[0:3] 4 bit output, intended for led signalling. (Unconnected in the evaluation design).
 - bce_mode[0:3] Mode of the communication protocol PicoBlaze6 MicroBlaze
- bce_op[0:7] Vector operation to be performed.
- bce_port[0:7] 8 bit output port. (Unconnected in the evaluation design).
- bce_port_id[0:7] 8 bit output External port address.

Address space [0x0 ... 0x1F] is reserved for optimized construction of the VLIW instruction to the 8xSIMD vector processing unit of the EdkDSP. Address space [0x20 ... 0xFF] can be used by the user.

- bce_port_wr 1 bit output. Write strobe for write of 8 bit data to the external port address.
- bce_r_pb 1 bit output. Reset of the PicoBlaze6.
- bce_we 1 bit output. Write strobe signals start of execution of a VLIW instruction by the 8xSIMD vector processing unit of the EdkDSP.
 - bce_dip4b[0:3] 4bit input (Connected to a constant in the evaluation design).
 - Bce_gpi8b[0:7] 8bit input (Connected to a constant in the evaluation design).

Figure 3: 8xSIMD EdkDSP floating point accelerator IP core with System ILA.

Interface of the 8xSIMD EdkDSP IP to the MicroBlaze processor

The EdkDSP IP core is connected to the 100 MHz MicroBlaze processor via the 100 MHz 32bit AXI lite bus represented by port **s_axi**, 100 MHz clock input **axi_aclk** and an asynchronous reset signal **axi_aresetn**. See *Figure 3*.

9/75

The debug ports are used for the real-time visualisation, debug and analysis of the computation implemented inside of the 8xSIMD data flow unit (DFU) of the (8xSIMD) EdkDSP accelerator IP. This makes easier to debug the compiled PicoBlaze6 firmware code. The implemented in circuit logic analyser (System ILA) debug probes can capture 8192 data samples in case of TE0720-03-2IF and TE0720-03-1QF module and 2048 data samples in case of TE0720-03-2IF and TE0720-03-1QF module and 2048 data samples in case of TE0720-03-14S-1C module. System ILA provides visibility for the auto-generated addresses and for the detailed schedule of vector operation in the 8xSIMD EdkDSP IP core. See *Figure 3*.

Figure 4 presents connection of the two parts of the 8xSIMD EdkDSP IP core.

Figure 4: Internal details of (8xSIMD) EdkDSP floating point accelerator IP core.

All bce_fp12_1x8_0_axiw_v1_[10|20|30|40] accelerators versions have identical Edk IP part.

The DSP part has identical ports and connectivity for all bce_fp12_1x8_0_axiw_v1_[10|20|30|40] accelerators versions.

The Edk part of the EdkDSP floating point accelerator IP core **bce_fp12_1x8_0_axiw_v1_0_c** includes inside the PicoBlaze6 controller, its program memories P0 and P1 and the 8xSIMD dual-ported block-ram memories 8xA, 8xB and 8xZ designed for parallel access. The **bce_fp12_1x8_0_axiw_v1_0_c** IP is designed in the Xilinx System Generator 14.5 and ported to the Vivado 2017.4.1 compatible IP core. The PicoBlaze6 firmware executes C code and supports C constructs like loops, while, if, else, function calls etc.

The first of the two ports of all block-rams are accessed by the MicroBlaze as memory via the Axi-lite bus.

- The second of the two ports of both program memories P0 and P1 are connected to the PicoBlaze6 controller.
- The second of the two ports of all data memories 8xA, 8xB and 8xZ are connected to the floating point data paths of the data flow unit (DFU) unit and support parallel access.

10/75

The DFU **bce_fp12_1x8_0_dsp** is designed in the Xilinx System Generator for DSP 2017.4.1. It contains 8 pipelined floating point ADD units, 8 pipelined floating point MULT units and one pipelined floating point DIV unit. The DFU supports all vector operations defined in Table 2.

- The 100bit VLIW instruction is transferred in two 50bit ports **mem_bce_i_lo** and **mem_bce_i_hi**. The VLIW instruction is set by dedicated PicoBlaze6 output ports. See Table 3.
- The 8xSIMD data flow unit executes 8xSIMD floating point operations defined in Table 2.
- The concrete 8xSIMD operation is defined by the PicoBlaze6 DFU_OP 8bit output register driving the mem_bce_op port of the bce_fp12_1x8_0_axiw_v1_0_c IP. The transfer of the complete VLIW instruction (100+8 bits) is triggered by the write strobe signal mem_bce_we. It is activated by PicoBlaze6 program write of the 8xSIMD operation DFU_OP. See Table 3.

The 8xSIMD data flow unit (DFU) indicates end of the operation in the 8bit output port **mem_bce_done**. PicoBlaze6 program can execute few instructions in parallel to the 8xSIMD operation defined in DFU_OP. End of the 8xSIMD operation is detected by the PicoBlaze6 program by reading of the input 8bit port **mem_bce_done**. PicoBlaze6 firmware defines the sequence of VLIW instructions for the 8xSIMD DFU unit by its dedicated output registers. PicoBlaze6 addresses of these dedicated output registers are listed in Table 3.

PicoBlaze6 registers used for definition of	Format	VLIW	Description of sections defined in the
the 100 bit wide VLIW instruction for the	[msblsb]	[2x 50bit]	VLIW instruction for the EdkDSP Data
EdkDSP Data Flow Unit		mem_bce_i_hi	Flow Unit
		mem_bce_i_lo	
[00b, DFU_CNT]	[2bit,8bit]	10 bit [4940]	Number of 8xSIMD steps (0 255)
[00b, DFU_Z_INC]	[2bit,8bit]	10 bit [3930]	Auto increment of Z address (0 255)
[DFU_Z_MEM_BANK, DFU_Z_MEM_SADDR]	[2bit,8bit]	10 bit [2920]	Set Z address after auto incr overflow
[DFU_Z_MEM_BANK, DFU_Z_MEM_ADDR]	[2bit,8bit]	10 bit [1910]	Initial Z address
[00b, DFU_B_INC]	[2bit,8bit]	10 bit [0900]	Auto increment of B address (0 255)
[DFU_B_MEM_BANK, DFU_B_MEM_SADDR]	[2bit,8bit]	10 bit [4940]	Set B address after auto incr overflow
[DFU_B_MEM_BANK, DFU_B_MEM_ADDR]	[2bit,8bit]	10 bit [3920]	Initial B address
[00b, DFU_A_INC]	[2bit,8bit]	10 bit [2920]	Auto increment of A address (0 255)
[DFU_A_MEM_BANK, DFU_A_MEM_SADDR]	[2bit,8bit]	10 bit [1910]	Set A address after auto incr overflow
[DFU_A_MEM_BANK, DFU_A_MEM_ADDR]	[2bit,8bit]	10 bit [0900]	Initial A address
[0000b, PBP_REG01]	[4bit,4bit]	8 bit	Set actual VLIW instr. memory (0 15)
[DFU_OP]	[8bit]	8 bit	Execute SIMD operation with
			parameters in the actual VLIW instr.
			memory (set by the PBP_REG01 port).

11/75

Table 3: PicoBlaze6 ports forming VLIW instruction for the 8xSIMD EdkDSP data flow unit.

http://zs.utia.cas.cz

3. EdkDSP IP Core – PicoBlaze6 C Application Interface Functions

The EdkDSP compiler embedded compilation of simple C and ASM programs or the PicoBlaze6 controller. PicoBlaze6 programs can use predefined and precompiled library functions listed in *Table 4*. Functions are optimized in the PicoBlaze6 assembler code, and occupy fixed area of the firmware and serve as common simple API for C and ASM PicoBlaze6 programs.

PicoBlaze6 firmware image with precompiled support functions is present in MicroBlaze header file **fill_def_program_store.h** PicoBlaze6 application program firmware is merged with this precompiled image by the MicroBlaze SW program.

PicoBlaze6 predefined functions	Description
unsigned char mb2pb_read_data();	Single unsigned char from MicroBlaze to PicoBlaze6
<pre>void pb2mb_write(unsigned char data);</pre>	Single unsigned char from PicoBlaze6 to MicroBlaze
<pre>void pb2mb_eoc(unsigned char data);</pre>	EOC unsigned char from PicoBlaze6 to MicroBlaze
<pre>void pb2mb_req_reset(unsigned char data);</pre>	Request from PicoBlaze6 to MicroBlaze to initiate PB reset
void pb2mb_reset();	Information from PicoBlaze6 to MicroBlaze - PB reset
void pb2dfu_set(unsigned char mem,	Set one section of the VLIW instruction for the data flow unit
unsigned char data);	(DFU) to an unsigned char data. VLIW instruction sections are
	addressed as PicoBlaze6 8bit output ports defined in Table 3
void pb2dfu_wait4hw();	PicoBlaze6 function is waiting for the termination of data flow
	unit operation.
unsigned char led2pb();	Write from PicoBlaze6 to 4 bit led output port
unsigned char btn2pb();	Read from 4 bit input port to PicoBlaze6
unsigned char hex_h(unsigned char ch);	Translate upper 4 bit nibble of an unsigned char to ascii
unsigned char hex_l(unsigned char ch);	Translate lower 4 bit nibble of an unsigned char to ascii
void pb2lcd_ascii_char(unsigned char ch,	Write from PicoBlaze6 to LCD asci alphanumerical display
unsigned char pos);	

12/75

	Table 4: PicoBlaze	6 precompiled	l support	functions
--	--------------------	---------------	-----------	-----------

http://zs.utia.cas.cz

4. EdkDSP IP Core – MicroBlaze C Application Interface Functions

MicroBlaze program is responsible for data communication, programming and initialization of the PicoBlaze6 and global scheduling of the implemented algorithm. The API providing MicroBlaze - Picoblaze6 interface is called Worker Abstraction Layer (WAL).

- 8xSIMD EdkDSP memory pointers and program memory pointers (from MicroBlaze view) are defined in *Table 5*.
- WAL error codes are defined in *Table 6*.
- 8xSIMD EdkDSP is supported by API functions collected in the WAL API are listed and described in *Table* 7.

MicroBlaze access names	Description of the 8xSIMD EdkDSP memory banks
WAL_BCE_JK_DMEM_A	index of the A data memory banks (8x [01023] 32bit words)
WAL_BCE_JK_DMEM_B	index of the B data memory banks (8x [01023] 32bit words)
WAL_BCE_JK_DMEM_Z	index of the Z data memory banks (8x [01023] 32bit words)
WAL_CMEM_MB2PB	index to MB2PB control memory (the control register of the worker)
WAL_CMEM_PB2MB	index to PB2MB control memory (the status register of the worker)
WAL_PBID_P0	index to P0 control memory (PicoBlaze program memory 1)
WAL_PBID_P1	index to P1 control memory (PicoBlaze program memory 2)

Table 5: MicroBlaze access names to 8xSIMD EdkDSP memory banks

Table 6: MicroBlaze WAL error codes

MicroBlaze WAL codes	Value	Description
WAL_RES_OK	0	all is OK
WAL_RES_WNULL	1	argument is a NULL
WAL_RES_ERR	-1	generic error
WAL_RES_ENOINIT	-2	not initiated
WAL_RES_ENULL	-3	null pointer
WAL_RES_ERUNNING	-4	worker is running
WAL_RES_ERANGE	-5	index/value is out of range

Table 7: MicroBlaze API functions for communication with 8xSIMD EdkDSP IP core

MicroBlaze API functions for communication with 8xSIMD EdkDSP IP core

wal_init_worker() - generalised function for worker initialising

***wrk** is a pointer to the worker structure.

This function is designed for calling from user application. The function checks if the *wrk structure is prepared to initiate worker (the family description structure must be set). Then the assigned family function (init_wrk()) is called. In the called function all arrays of pointers to shared memories should be initiated.

Return Value: The function returns return code WAL_RES_OK if successful and WAL_RES_E... if any error occurs.

13/75

int wal_init_worker(struct wal_worker *wrk);

signal processing

wal_done_worker - generalised function for worker clean-up

*wrk is a pointer to the worker structure

This function is designed for calling from user application. The function calls done function (done_wrk()) assigned to family description structure. In the called function all dynamically allocated worker structures, memories and resources should be clean-up and released if they have been created in the worker init function.

Return Value: The function returns WAL_RES_... codes.

int wal_done_worker(struct wal_worker *wrk);

wal_reset_worker() - generalised function for worker hard reset

*wrk is a pointer to the worker structure

This function is designed for calling from user application. The function calls reset function (reset_wrk()) assigned to the family description structure. In the called function the worker control registers should be reset (by HARD RESET bit in the worker control register). The reset is not acknowledged by accelerator.

Return Value: The function returns WAL_RES_... codes.

int wal_reset_worker(struct wal_worker *wrk);

wal_start_operation() - generalised function for starting operation on the accelerator.

***wrk** is a pointer to the worker structure. ***pbid** is an index of used PB firmware (WAL_PBID_...)

This function is designed for calling from user application. The function checks if the accelerator is in the idle state and then it calls function for starting operation (start_op()) assigned to the family description structure. The called function should start a new accelerator operation by setting accelerator control register and checking status register. This function is blocking, i.e. it waits for acknowledgement from accelerator.

Return Value: The function returns WAL_RES_... codes.

int wal_start_operation(struct wal_worker *wrk, unsigned int pbid);

wal_end_operation() - generalised function for finishing operation on the accelerator.

*wrk is a pointer to the worker structure.

This function is designed for calling from user application. The function checks if the accelerator is in processing state and then it calls function for ending operation (end_op()) assigned to the family description structure. The called function should stop processing operation on the accelerator. And it waits for synchronization with the accelerator, therefore the function is blocking.

Return Value: The function returns WAL_RES_... codes.

int wal_end_operation(struct wal_worker *wrk);

wal_mb2pb() - generalised function for setting worker control register.

*wrk is a pointer to the worker structure. data is user data to be send to worker control register.

This function is designed for calling from user application. The function calls function for setting worker control signal processing

14/75

register (mb2pb()) assigned to the family description structure. The called function should send user data through control register with controlling READ bit. It should also waits for synchronization with accelerator.

Return Value: The function returns WAL_RES_... codes.

int wal_mb2pb(struct wal_worker *wrk, const uint32_t data);

wal_pb2mb() - generalised function for reading worker status register.

***wrk** is a pointer to the worker structure. ***data** is a pointer to an output buffer where read user data is written.

This function is designed for calling from user application. The function calls function for reading worker status register (pb2mb()) assigned to the family description structure. The called function should read user data through worker status register with waiting for synchronization with accelerator.

Return Value: The function returns WAL_RES_... codes.

int wal_pb2mb(struct wal_worker *wrk, uint32_t *data);

wal_mb2cmem() - generalised function for writing a block of data to any worker control or support memory

***wrk** is a pointer to the worker structure. **memid** is an index of control/support memory where data are written to (WAL_CMEM_... or WAL_..._SMEM_...). **memoffs** is offset in selected memory (in words not in bytes). **outbuf** is a pointer to memory where data are read from. **len** is a number of words to copy from **outbuf** to accelerator control memory.

This function is designed for calling from user application. The function checks index of the required memory and then it calls function for writing data to any control/support memory (mb2cmem()) assigned to the family description structure. The called function should get a pointer to the right memory according to the required index **memid**. For accessing support memories they have to define indices greater then indices to control memories. Then the called function should copy a block of data from CPU memory **outbuf** to an accelerator control/support memory selected by **memid** and offset in selected memory **memoffs**.

Return Value: The function returns WAL_RES_... codes.

wal_cmem2mb() - generalised function for reading a block of data from any worker control or support memory

***wrk** is a pointer to the worker structure. **memid** is an index of control/support memory where data are read from

(WAL_CMEM_... or WAL_..._SMEM_...). **memoffs** is offset in selected memory (in words not in bytes). ***inbuf** is a pointer to memory where data are written to. **Ien** is a number of words to copy from accelerator control memory.

This function is designed for calling from user application. The function checks index of the required memory and then it calls function for reading data from any control/support memory (cmem2mb()) assigned to the family description structure. The called function should get a pointer to the right memory according to the required index **memid**. For accessing support memories they have to define indices greater then indices to

signal processing

control memories. Then the called function should copy a block of data from the accelerator control/support memory selected by **memid** and offset in selected memory **memoffs**.

Return Value: The function returns WAL_RES_... codes.

int wal_cmem2mb(struct wal_worker *wrk, unsigned int memid, unsigned int memoffs, uint32_t *inbuf, unsigned int len);

wal_mb2dmem() - generalised function for writing a block of data to any worker data memory

***wrk** is a pointer to the worker structure. **simdid** is an index of SIMD which data memories are indexed. **memid** is an index of control/support memory where data are written to (WAL_CMEM_... or WAL_..._SMEM_...). **memoffs** is offset in selected memory (in words not in bytes). ***outbuf** is a pointer to memory where data are read from. **Ien** is a number of words to copy from ***outbuf** to accelerator control memory.

This function is designed for calling from user application. The function checks index of the required memory and then it calls function for writing data to any data memory (mb2dmem()) assigned to the family description structure. The called function should get a pointer to the right memory according to the required SIMD **simdid** and memory index **memid**. Then the called function should copy a block of data from CPU memory ***outbuf** to the accelerator data memory with offset inside the selected memory **memoffs**.

Return Value: The function returns WAL_RES_... codes.

int wal_mb2dmem(struct wal_worker *wrk, unsigned int simdid, unsigned int memid, unsigned int memoffs, const void *outbuf, unsigned int len);

wal_dmem2mb() - generalised function for writing a block of data to any worker data memory

***wrk** is a pointer to the worker structure. **simdid** is an index of SIMD which data memories are indexed. **memid** is an index of control/support memory where data are read from (WAL_CMEM_... or WAL_..._SMEM_...). **memoffs** is offset in selected memory (in words not in bytes). ***inbuf** is a pointer to memory where data are written to. **len** is a number of words to copy from accelerator control memory.

This function is designed for calling from user application. The function checks index of the required memory and then it calls function for reading data from any data memory (dmem2mb()) assigned to the family description structure. The called function should get pointer to the right memory according to the required SIMD **simdid** and memory index **memid**. Then the called function should copy a block of data from the accelerator data memory with offset inside the selected memory **memoffs**.

Return Value: The function returns WAL_RES_... codes.

int wal_dmem2mb(struct wal_worker *wrk, unsigned int simdid, unsigned int memid, unsigned int memoffs, void *inbuf, unsigned int len);

wal_set_firmware() - generalised function for writing PicoBlaze firmware

***wrk** is a pointer to the worker structure. **pbid** is an index of used PB firmware (WAL_PBID_...). ***fwbuf** is a pointer to a firmware in CPU memory. **fwsize** is a size of the firmware in words, it can be a negative value to set full firmware (4096 words).

This function is designed for calling from user application. The function checks if all arguments are correct and then it calls function for writing PB firmware (set_fw()). The called function should copy firmware from CPU memory ***fwbuf** to PicoBlaze6 program memory in the accelerator. The PB program memory is selected by the

signal processing

argument **pbid**. The firmware needn't be full 4096 word long. The firmware length (in words) can be set by the argument **fwsize**. If the **fwsize** is a negative value (you can use defined value WAL_FW_WHOLE) the function assumes the FW length is 4096 words.

Return Value: The function returns WAL_RES_... codes.

int wal_set_firmware(struct wal_worker *wrk, int pbid, const unsigned int *fwbuf, int fwsize);

wal_bce_jk_get_id() - implementation of the worker get_id() function for the BCE_JK families

***wrk** is a pointer to the worker structure. **pbid** is an index of used PB firmware (WAL_PBID_...). **outval** is a pointer to an output buffer for read worker ID.

The function emulates reading worker ID from hardware because the BCE_JK families don't support this operation in the hardware.

Return Value: The function always returns WAL_RES_OK.

int wal_get_id(struct wal_worker *wrk, int pbid, unsigned int *outval);

wal_bce_jk_get_cap() - implementation of the worker get_cap() function for the BCE_JK families
*wrk is a pointer to the worker structure. pbid is an index of used PB firmware (WAL_PBID_...). *outval is a
pointer to an output buffer for read capabilities.

The function sends operation WAL_BCE_JK_VVER to accelerator, reads the worker capabilities and returns the read value in the ***outval** buffer.

Return Value: The function returns WAL_RES_... codes.

int wal_get_capabilities(struct wal_worker *wrk, int pbid, unsigned int *outval);

wal_bce_jk_get_lic() - implementation of the get_lic() function for the BCE_JK families

***wrk** is a pointer to the worker structure. **pbid** is an index of used PB firmware (WAL_PBID_...). ***outval** is a pointer to an output buffer for read license.

The function reads the license from the worker. For BCE_JK families the license is a 2bit license down-counter contained in the value returned by accelerator operation WAL_BCE_JK_VVER. The 2bit license counter is returned in the ***outval** buffer.

Return Value: The function returns WAL_RES_... codes.

int wal_get_license(struct wal_worker *wrk, int pbid, unsigned int *outval);

All worker abstraction layer API functions listed in *Table 7* are precompiled into the MicroBlaze library **wal.a** and declared in MicroBlaze header files wal.h and **wal_bce_jk.h**.

The worker abstraction layer API functions listed in *Table 7* support instantiation of several (more than 1) instances of the 8xSIMD EdkDSP IP core.

17/75

5. EdkDSP IP Core – Integration with dual core ARM A9 Linux

The 8xSIMD EdkDSP IP core is integrated in a tester system with architecture presented in *Figure 2* and photo of the HW presented in *Figure 1* and *Figure 5*.

The dual core ARM Cortex A9 system runs configured PetaLinux 2017.4.1 operating system and supports:

- Ethernet 1 Gbit
- SSH, telnet, FTP, ...
- The system image is located on SD card. After the initial boot, the file system is decompressed to the RAM FS in DDR3. The SD card file system is mounted and visible in the running PetaLinux.
- Symmetrical multiprocessing on two ARM A9 processors
- SDSoC 2017.4.1 generated HW accelerators with data movers based on:
 - Simple DMA with HW supported data movers (DMA data width 32bit or 64bit) with no ARM interrupts. Simple DMA requires allocation of continuous memory space.
 - SG DMA with data movers (DMA data width 32bit or 64bit) with ARM interrupts. SG DMA can work with continuous allocation of memory or with standard Linux allocation of memory, where the continuous allocation is not guaranteed.
 - HW data movers connected to the advanced cache coherent port resolving in HW the cache coherency of dual core ARM access and data mover access to DDR3.

The MicroBlaze processor and the 8xSIMD EdkDSP IP core require initialisation and synchronisation with Linux and the dual core ARM subsystem. This is arranged by the following configuration of reserved DDR3 memory (1 GB)

Memory Area (in Bytes)	Size	Description
0x0000 0000 0x27FF FFFF	640 M Byte	Memory managed by standard Linux memory allocation
		mechanism. Used by dual core Arm A9 symmetrical
		multiprocessing 32 bit Linux
0x2800 0000 0x280F FFFF	1 M Byte	Reserved for MicroBlaze – ARM communication
		It is continuous memory reserved in Linux configuration
0x2800 0000 0x2810 0FFF	4 kByte	Reserved for PicoBlaze6 f0 firmware (MicoBlaze and ARM)
0x2800 1000 0x2810 1FFF	4 kByte	Reserved for PicoBlaze6 f1 firmware (MicoBlaze and ARM)
0x2800 2000 0x2810 2FFF	4 kByte	Reserved for PicoBlaze6 f2 firmware (MicoBlaze and ARM)
0x2800 3000 0x2810 3FFF	4 kByte	Reserved for PicoBlaze6 f3 firmware (MicoBlaze and ARM)
0x2800 4000 0x281F FFFF	Reserved	Reserved for 8xSIMD EdkDSP data (MicoBlaze and ARM)
0x2810 0000 0x29FF FFFF	15 M Byte	MicroBlaze program & data. Microblaze processor IP is
		configured for execution of its code from 0x28100000.
		It is a part of the continuous memory reserved in Linux.
0x2A00 0000 0x2FFF FFFF	112 M Byte	Continuous memory reserved for video frame buffers.
0x3000 0000 0x3FFF FFFF	256 M Byte	Memory reserved for SDSoC data mover and DMA drivers.

Table 8: Organisation of DDR3 memory

Linux user application uses the four reserved 4k Byte areas for copy of four PicoBlaze6 firmware programs. These programs can be compiled on the dual core ARM A9 from the C and ASM source codes stored as asci files on the mounted SD card file system. Compiled firmware programs are read by the user application running on ARM from the SD card files and copied as data to the reserved 4kB continuous memory areas. MicroBlaze6 program (after HW mutex based synchronisation) reads this data and uses them for programming of PicoBlaze6 FSM of the 8xSIMD EdkDSP IP.

18/75

signal processing

6. Setup of Hardware

HW setup is based on components [1], [2], [3], [4], [5] designed and manufactured by company Trenz Electronic:

TE0720-03-2IF; Part: XC7Z020-2CLG484I; 1 GByte DDR; Industrial Grade (Tj = -40°C to +100°C) [1]. **TE0720-03-1QF**; Part: XA7Z020-1CLG484Q; 1 GByte DDR; Automotive Grade (Tj = -40°C to +125°C) [1]. **TE0720-03-214S-1C**; Part: XC7Z014S-1CLG484C; 1 GByte DDR; Industrial Grade (Tj = 0°C to +85°C) [1]. **Heatsink for TE0720**, spring-loaded embedded [2]. The heatsink serves for the passive cooling of Zynq module. **TE0706-02 Carrier Board** from Trenz Electronic [3]. Board targets extension with second Ethernet in the Zynq PL. **TE0703-05 Carrier Board** from Trenz Electronic [3]. Board targets wide I/O with pre-processing in a Lattice FPGA. **Pmod USBUART** Serial converter & interface [4]. Serves for output from MicroBlaze to PC console via PC USB. **TE0790-02 XMOD FTDI JTAG Adapter** - Xilinx compatible [5]. Supports console and Jtag in case of TE0706-02.

The technical reference manuals (TRM) of the TE0720-03-2IF, TE0720-03-1QF and TE0720-03-214S-1C modules can be downloaded from [1] and TRM for carrier board TE0706-02 or TE0703-05 can be downloaded from [3].

Figure 5: TE0706-02; TE0720-03-14S-1C; USBUART and XMOD FTDI JTAG adapter

19/75

http://zs.utia.cas.cz

Configuration of switches and jumpers on carrier boards TE0703-05 and TE0706-02

Configuration of the TE0703-05 board (and the TE0720-03-1CFA-S starter kit with the TE0703-05 carrier)

- Set jumpers of the TE0703-05 board to VCCIOA=3.3V; VCCIAOB=1.8V; VCCIOC=3.3V; VCCIOD=3.3V by: J5: connect 2-3; J8: connect 1-2; J9: connect 2-3; J10: connect 2-3
- Set switch S1 of the TE0706-02 board to: 1=OFF; 2=ON; 3=ON; 4=ON

Configuration of TE0706-02 board

- Set jumpers of the TE0706-02 board to generate VCCIOA=3.3V; VCCIOC=3.3V; VCCIOD=3.3V by J10: connect 2-3; J11: connect 2-3; J12: connect 2-3
 In case of the TE0706-02 board the VCCIAOB=1.8V is set directly on the PCB (no dedicated jumper).
- Set switch S1 of the TE0706-02 board to: 1=ON; 2=ON; 3=ON; 4=OFF

Configuration of TE0790-02 xmod adapter

The TE0706-02 board ARM serial terminal/JTAG is connected to the PC by a Mini USB (type B) cable via the **TE0790-02** XMOD FTDI JTAG adapter [5]. See *Figure 1* and *Figure 5*.

• Set switch in the XMOD module to:

• 1=ON; 2=OFF; 3=ON; 4=OFF;

The jumper on the USBUART pmod is set to the default: connect **lcl-vcc**. With this setup, the USBUART pmod convertor chip is powered from the PC 5V USB source. The TE0790-02 xmod adapter generates its local 3.3V power supply by an on-module DC2DC power converter. See *Figure 1* and *Figure 5*.

Configuration of USBUART pmod adapter

The serial terminal for MicroBlaze is connected to the PC by a Micro USB cable via the USBUART pmod adapter. The J6 connector on the TE0706-02 and J2 connector on the TE0703-05 have three lines of 32 pins named:

[A1 A2 A3 A4 A5 A6 ... A32] [**B1 B2 B3 B4 B5 B6** ... B32] [C1 C2 C3 C4 C5 C6 ... C32]

In case of the TE0706-02 board, the USBUART pmod is connected to pins [B1 ... B6] of connector J6B (central line B). See Table 9, *Figure 6* and the concrete implemented solution on *Figure 5*:

TE0706-02	USBUART	Name	Function
J6 pin B1	J2 pin 6	3.3V	Disconnected by USBUART jumper. Power for USBUART from PC USB 5V
J6 pin B2	J2 pin 5	GND	Ground
J6 pin B4	J2 pin 3	TXD	FPGA Pin: AB2; FPGA design net: uart_pmod_tx; Direction: from PC to FPGA
J6 pin B5	J2 pin 2	RXD	FPGA pin: U5; FPGA design net: uart_pmod_rx; Direction: from FPGA to PC

 Table 9: Connection of USBUART to TE0706-02

In case of the TE0703-05, the USBUART pmod can be also to pins [B1 ... B6] of the connector J2 if the communication from PC to MicroBlaze is not needed. If needed, use a custom cable. See Table 10 and Figure 7.

TE0703-05	USBUART	Name	Function
J2 pin B1	J2 pin 6	3.3V	Disconnected by USBUART jumper. Power for USBUART from PC USB 5V
J2 pin B2	J2 pin 5	GND	Ground
J2 pin C3	J2 pin 3	TXD	FPGA Pin: AB2; FPGA design net: uart_pmod_tx; Direction: from PC to FPGA
J2 pin B5	J2 pin 2	RXD	FPGA pin: U5; FPGA design net: uart_pmod_rx; Direction: from FPGA to PC

Table 10: Connection of USBUART to TE0703-05

signal processing

20/75

- 1. 5V power connector jack, J1
- 2. Reset switch, S2
- 3. USB2.0 type A receptacle, J7
- 4. Micro SD card socket with Card Detect, J4
- 5. 50 pin IDC male connector, J5
- 6. 1000Base-T Gigabit RJ45 Ethernet MagJack, J3
- 7. 1000Base-T Gigabit RJ45 Ethernet MagJack, J2
- 8. XMOD JTAG- / UART-header, JX1
- 9. User DIP-switch, S1
- 10. VCCIO selection jumper block, J10 J12
- 11. External connector (VG96) placeholder, J6
- 12. Samtec Razor Beam[™] LSHM-150 B2B connector, JB1
- 13. Samtec Razor Beam[™] LSHM-150 B2B connector, JB2
- 14. Samtec Razor Beam[™] LSHM-130 B2B connector, JB3

Figure 6: TE0706-02 Carrier Board.

Figure 6 presents main components and connector locations of the TE0706-02 Carrier Board [3]. The evaluation package released together with this application note supports single 1000Base-T Gigabit RJ45 Ethernet MagJack, J3 as Arm A9 PetaLinux eth0. See *Figure 6*. Output path from MicroBlaze to PC and input path from the PC keyboard to MicroBlaze is supported by USBUART connected directly to the connector **J6: B1...B6** pins. See <u>https://wiki.trenz-electronic.de/display/PD/TE0706+TRM</u> for source of the photo and for detailed description of the **TE0706-02** carrier board.

21/75

http://zs.utia.cas.cz

- 1. Samtec Razor Beam[™] LSHM-150 B2B connector, JB1
- 2. Samtec Razor Beam[™] LSHM-150 B2B connector, JB2
- 3. Samtec Razor Beam[™] LSHM-130 B2B connector, JB3
- 4. Micro SD card socket with detect switch, J3
- 5. LED indicators D1 and D2
- 6. Mini-USB type B connector, J4
- 7. LED indicators D3 and D4
- 8. Configuration DIP switches, S2
- 9. User push button (Reset), S1
- 10. External connector (VG96) placeholder, J1
- 11. External connector (VG96) placeholder, J2
- 12. VCCIO voltage selection jumper block, J5, J8, J9 and J10
- 13. Trxcom 1000Base-T Gigabit RJ45 Magjack, J14
- 14. USB type A receptacle, J6 (optional micro USB 2.0 type B receptacle available, J12)
- 15. 5V power connector jack, J13

Figure 7: TE0703-05 Carrier Board.

Figure 7 presents main components and connector locations of the TE0703-05 Carrier Board [3]. The precompiled designs can be used without modification on the TE0703-05. Output path from MicroBlaze to PC is supported if the USBUART is connected to the **J2: B1...B6** pins directly. Output path from MicroBlaze to PC and input path from the PC keyboard to MicroBlaze is supported only if the USBUART is connected to the **J2: B1 B2 C3 B5** pins indirectly (via a custom made cable). See https://wiki.trenz-electronic.de/display/PD/TE0703+TRM for source of the photo and for description of the **TE0703-05** carrier board.

7. Reference Application for the 8xSIMD EdkDSP IP Core

The reference application is the active acoustics noise cancellation for the hands free telephony.

The near end signal e(i) (voice of a speaker) is disturbed by a disturbance signal received by the near end microphone. This unknown disturbance y(i) is generated by a known (measured) far end signal (example: noise from the motor engine) u(i). The objective of the active acoustics noise cancellation is to use the measured disturbed near end microphone signal d(i) and the signal measured by the far end microphone u(i) for reconstruction of the near end speaker signal e(i) with cancelled disturbance.

The transfer function from the far end (known) source of the disturbance is modelled by a recursive FIR filter with 2000 coefficients with sampling rate 75 kHz.

Recursive FIR filter algorithm:

Objective of FIR filter is to generate sequence of modelled system outputs d(i) based on the sequence of system inputs u(i) and constant vector of N FIR filter coefficients. The generated output sequence includes also the random additive output noise defined by white noise signal e(i).

 $\begin{aligned} x(i) &= u(i) \\ y(i) &= [w(1), w(2), ..., w(N)] * [x(i), x(i-1), ... x(i-N+1)]^T \\ d(i) &= y(i) + e(i) \end{aligned}$

Recursive adaptive LMS filter algorithm:

Objective of adaptive LMS filter is to identify recursively an unknown vector of N=2000 FIR filter coefficients from a sequence of system inputs u(i) and system outputs d(i) with sampling rate 75 kHz. The algorithm works under an assumption that the measured output sequence d(i) has been generated by a FIR filter with unknown coefficients with dimension N=2000 and includes also the unknown random white noise signal. Signal e(i) is estimated by the adaptive LMS filter.

 $\begin{array}{l} x(i) = u(i) \\ y(i) = [w(1), w(2), ..., w(N)] * [x(i), x(i-1), ... x(i-N+1)]^T \\ e(i) = d[i] - y[i] \\ [w(1), w(2), ..., w(N)] = [w(1), w(2), ..., w(N)] + mu * e(i) * [x(i), x(i-1), ... x(i-N+1)] \end{array}$

Where N is order of the FIR and LMS filter. N = 2000 in the implemented designs.

u(i) is scalar, floating point input to the system

d(i) is scalar, floating point output of a system

y(i) is scalar, floating point output of FIR filter

e(i) is scalar, floating point prediction error

[w(1), w(2), ..., w(N)] is vector of N scalar, floating point FIR filter coefficients, N=2000.

mu is scalar, floating point constant used for control of the speed of convergence of the adaptive LMS filter.

The 8xSIMD EdkDSP IP Core

The 8xSIMD EdkDSP IP Core is configured for accelerated floating point computation of the recursive FIR filter with constant parameters N=2000 and for acceleration of the adaptive recursive LMS filter with N=2000 unknown coefficients with required sustained sampling frequency 75 kHz. The FIR filter models the environment and generates the sequence of u(i), d(i) data measurements.

23/75

http://zs.utia.cas.cz

The LMS filter serves for reconstruction of the unknown e(i) sequence – the speaker voice with partially cancelled disturbance from the far distance source. Requirements and main implementation results (for the floating point FIR & LMS filter implementation on the 8xSIMD EdkDSP IP) are listed in *Table 11*.

Parameter (Module TE0720-03-2IF)	Requirement	SW MicroBlaze 100 MHz	8xSIMD EdkDSP 120 MHz
		Requirements met (YES/NO)	Requirements met (YES/NO)
FIR filter sampling rate Order N=2000	75 kHz	2.25 kHz (NO)	279.70 kHz (YES)
FIR sustained performance (MFLOPs)	300 MFLOPs	9 MFLOPs (NO)	1119 MFLOPs (YES)
LMS filter sampling rate Order N=2000	75 kHz	1.125 kHz (NO)	90.75 KHz (YES)
LMS sustained performance (MFLOPs)	600 MFLOPs	9 MFLOPs (NO)	728 MFLOPs (YES)
Parameter (Modules	Requirement	SW MicroBlaze 100 MHz	8xSIMD EdkDSP 100 MHz
TE0720-03-1QF, TE0720-03-14S-1C)		Requirements met (YES/NO)	Requirements met (YES/NO)
FIR filter sampling rate Order N=2000	75 kHz	2.25 kHz (NO)	244.4 kHz (YES)
FIR sustained performance (MFLOPs)	300 MFLOPs	9 MFLOPs (NO)	978 MFLOPs (YES)
LMS filter sampling rate Order N=2000	75 kHz	1.125 kHz (NO)	77.03 KHz (YES)
LMS sustained performance (MFLOPs)	600 MFLOPs	9 MFLOPs (NO)	618 MFLOPs (YES)
Bit exact identical results for 8xSIMD	Required	YES	YES
EdkDSP IP and MB (FIR and LMS)			
Parallel EdkDSP computation and data	Required	YES	YES
transfers to/from DDR3 by MicroBlaze			
Runtime change of 8xSIMD EdkDSP IP	Required	NA	YES
Embedded 8xSIMD EdkDSP C compiler	Required	NA	YES
Compatibility with SDSoC 2017.4.1	Required	YES	YES
Compatibility with PetaLinux 2017.4.1	Required	YES	YES
Compatibility with free SDK 2017.4.1	Required	YES	YES
and free edition of Vivado HLS 2017.4.1			

Table 11: Requirements and results.

Summary of main results related to the performance of the 8xSIMD EdkDSP IP:

- The required LMS filter sampling rate 75 KHz (with N=2000) is reached for the TE0720-03-2IF module.
- The maximum sampling rate is 90.75 kHz for the adaptive LMS filter and 279.7 kHz for the FIR filter on the TE0720-03-2IF module with the 120 MHz 8xSIMD EdkDSP.
- The sustained floating-point performance of the 120 MHz 8xSIMD EdkDSP on TE0720-03-2IF module is 728 MFLOPs in case of the adaptive LMS filter and 1119 MFLOPs in case of the FIR filter.
- The maximum sampling rate is 77.03 kHz for the adaptive LMS filter and 244.4 kHz for the FIR filter on the on TE0720-03-1QF or TE0720-03-14S-1C module with the 100 MHz 8xSIMD EdkDSP.
- The sustained floating-point performance of the 100 MHz 8xSIMD EdkDSP on TE0720-03-1QF or TE0720-03-14S-1C module is 618 MFLOPs in case of the adaptive LMS filter and 978 MFLOPs in case of the FIR filter.
- The 8xSIMD EdkDSP is controlled from the 100 MHz MicroBlaze processor and operates in parallel to the Cortex A9 processor(s).
- The 8xSIMD EdkDSP operates in parallel to each of the 21 Linux examples and 19 standalone examples of HW accelerators generated from selected Cortex A9 C/C++ functions in the Xilinx SDSoC 2017.4.1 design environment.
- The embedded C/ASM compiler utilities for the 8xSIMD EdkDSP accelerator run as Linux applications on the Arm Cortex A9 processor. These utilities can re-compile new EdkDSP firmware from the modified C/ASM source code in the runtime.

24/75

8. Installation and Use of Base Evaluation Package

This chapter describes the installation and use of a base evaluation package. Package is demonstrating:

- In-circuit Logic Analyser (ILA) JTAG based inspection/observation/debug of the 8xSIMD EdkDSP IP. ILA works with internal buffer for 8k samples and operates at 100 MHz (1qf and 14s device) and 120 MHz (2if device). See *Figure 9, Figure 10, Figure 11, Figure 12*.
- The standalone examples support ILA and additionally can display the on-chip temperature via JTAG. See *Figure 13*
- Embedded Compilation from a C/ASM source code to firmware for the reprogrammable PicoBlaze6 finite state machine (FSM) scheduling inside of the 8xSIMD EdkDSP IP core the floating point computation sequences performed in the 8xSIMD data flow unit (DFU). This embedded compilation is supported for the Linux examples. See *Figure 14 Figure 15*, *Figure 16*.
- There is no need to install Xilinx SDK 2017.4.1, Xilinx Vivado 2017.4.1 tools or Xilinx SDSoC 2017.4.1.
- The In-circuit Logic Analyser (ILA) JTAG based inspection/observation/debug can be performed from the free Xilinx Lab Vivado 2017.4.1 tool installed on Win7 (64bit) or Win 10 (64bit) PC
- The Linux target examples support 1GBit Ethernet, SSH telnet and file system management tools like the Total Commander for an ftp based access from PC to the SD card files.

The base evaluation package provides 21 demos for the Linux target and the 19 precompiled demos for the standalone target. *Table 12* describes demos, PL resources and the HW/SW SDSoC 2017.4.1. acceleration data.

25/75

ŪΠΑ

http://zs.utia.cas.cz

Akademie věd České republiky Ústav teorie informace a automatizace AV ČR, v.v.i.

Linux	Standalone	Description of ARM SDSoC acceleration examples. All examples are extended versions
Acceleration	Acceleration	of the Xilinx GitHub SDSoC 2017.1 examples. SW extensions support the initialisation of the MicroBlaze processor and the SySIMD EdkDSP IP core
te01 l	te01 s	array partition - This example shows how to use array partitioning to improve
	1001_3	performance of a hardware function. It performs int32 matrix multiplication
		C[32,32] = A[32,32] * B[32,32]
2if: 3.39x	2if: 6.62x	150 MHz Slices: 63.20% Luts: 44.36% Registers: 23.69% BRAMs: 76.79% DSPs: 54.55%
1qf: 4.40x	1qf: 7.29x	150 MHz Slices: 65.14% Luts: 43.27% Registers: 26.00% BRAMs: 76.79% DSPs: 54.55%
14s: 4.46x	14s: 7.17x	150 MHz Slices: 63.71% Luts: 56.60% Registers: 34.05% BRAMs: 89.25% DSPs: 70.59%
1cfa:	1cfa:	150 MHz Slices: 65.06% Luts: 44.34% Registers: 24.66% BRAMs: 76.79% DSPs: 54.55%
te02_l	te02_s	burst_rw - This is simple example of using AXI4-master interface for burst read and write.
2if:	2if:	150 MHz Slices: 56.80% Luts: 38.86% Registers: 21.14% BRAMs: 51.43% DSPs: 9.55%
1qf:	1qf:	150 MHz Slices: 55.72% Luts: 38.89% Registers: 21.14% BRAMs: 51.43% DSPs: 9.55%
14s:	14s:	150 MHz Slices: 54.65% Luts: 50.87% Registers: 27.67% BRAMs: 56.07% DSPs: 12.35%
1cfa:	1cfa:	150 MHz Slices: 56.06% Luts: 38.86% Registers: 21.14% BRAMs: 51.43% DSPs: 9.55%
te03_l	te03_s	custom_data_type - This is a simple example of RGB to HSV conversion to demonstrate
		Custom Data Type usage in hardware accelerator. Xilinx HLS compiler supports custom
		data type to operate within the hardware function and also it acts as a memory
		interface between PL to DDR3.
2if: 22.48x	2if: 25.16x	150 MHz Slices: 60.69% Luts: 42.18% Registers: 22.93% BRAMs: 51.43% DSPs: 10.91%
1qf: 25.43x	1qf: 28.94x	150 MHz Slices: 59.81% Luts: 42.21% Registers: 23.07% BRAMs: 51.43% DSPs: 10.91%
14s: 25.88x	14s: 28.88x	150 MHz Slices: 59.32% Luts: 55.23% Registers: 30.07% BRAMs: 56.07% DSPs: 14.12%
1cfa:	1cfa:	150 MHz Slices: 60.29% Luts: 42.22% Registers: 22.97% BRAMs: 51.43% DSPs: 10.91%
te04_l	te04_s	data_access_random - This is a simple example of int32 matrix multiplication
		(Row x Col) C[32,32]= A[32,32]*B[32,32] to demonstrate random data access pattern.
2if: 0.57x	2if: 0.57x	120 MHz Slices: 65.63% Luts: 43.55% Registers: 25.34% BRAMs: 56.43% DSPs: 13.64%
1qf: 0.63x	1qf: 0.63x	120 MHz Slices: 64.33% Luts: 43.58% Registers: 25.35% BRAMs: 56.43% DSPs: 13.64%
14s: 0.63x	14s: 0.63x	120 MHz Slices: 64.60% Luts: 57.02% Registers: 33.19% BRAMs: 62.62% DSPs: 17.65%
1cfa:	1cfa:	120 MHz Slices: 65.34% Luts: 43.57% Registers: 25.35% BRAMs: 56.43% DSPs: 13.64%
te05_l	te05_s	dependence_inter - This is a simple example to demonstrate inter dependence
		attribute. Using inter dependence attribute user can provide additional dependency
		details to compiler which allow compiler to perform unrolling/pipelining to get better
2:6 5.04	2:6 6 54	performance.
211: 5.84x	2IT: 6.51X	150 MHZ SIICES: 58.66% LUTS: 40.36% Registers: 22.57% BRAMS: 55.00% DSPS: 22.27%
1qt: 6.42x	1qt: 7.16x	150 MHZ SIICES: 59.05% LUTS: 40.30% REgisters: 22.80% BRAMS: 55.00% DSPS: 22.27%
145: 6.60X	145: 7.22X	150 MHZ SIICES: 58.81% LUTS: 52.72% REGISTERS: 29.85% BRAIMS: 60.75% DSPS: 28.82%
		150 MHZ SIICES: 60.74% LUIS: 40.30% Registers: 22.80% BRAINS: 55.00% DSPS: 22.27%
1606_1	leub_s	direct_connect - This is a simple example of Int32 matrix multiplication with matrix addition $(Out[22,22] = (A[22,22] * B[22,22]) + C[22,22])$ to domonstrate direct
		adultion $(Out[52,52] - (A[52,52] + B[52,52]) + C[52,52])$ to demonstrate unect
2if. 8 61v	2if. 0 14v	150 MHz Slices: 75 00% Lute: 40 24% Registere: 20 72% RRAMs: 82 50% DSRs: 57 72%
1 af. 8 26v	1 af & 07v	120 MHz Slices: 72 65% Luts: 49.24% Registers: 29.73% DRAMIS. 02.30% DSPS. 37.73%
145.922	141.0.32X	150 MHz Slices: 72.03/0 Luts: 62.90% Registers: 23.73% DRAWIS. 02.30% DSPS. 37.73%
1cf2·	1cf2·	120 MHz Slices: 73 46% Luts: 49 20% Registers: 29 73% RRAMs: 20.73% DSF3. 74.71%
		dma sg - This example demonstrates how to use Scatter-Gather DMAs for data transfer
1007_1		to/from hardware accelerator.
2if:	2if:	150 MHz Slices: 73.83% Luts: 48.92% Registers: 29.41% BRAMs: 60.00% DSPs: 9.55%
1qf: depart	ment olaf:	120 MHz Slices: 72.84% Luts: 48.94% Registers: 29.41% BRAMs: 60.00% DSPs: 9.55%

26/75

Table 12: Description of ARM SDSoC acceleration examples compatible with 8xSIMD EdkDSP IP

signal processing

14s:	14s:	150 MHz Slices: 74.14% Luts: 64.08% Registers: 38.59% BRAMs: 67.29% DSPs: 12.35%
1cfa:	1cfa:	120 MHz Slices: 74.60% Luts: 48.95% Registers: 29.41% BRAMs: 60.00% DSPs: 9.55%
te08_l	te08_s	dma_simple - This example demonstrates how to insert Simple DMAs for data transfer
		between user program and hardware accelerator.
2if:	2if:	150 MHz Slices: 63.16% Luts: 43.06% Registers: 24.72% BRAMs: 56.43% DSPs: 9.55%
1qf:	1qf:	150 MHz Slices: 64.74% Luts: 43.07% Registers: 24.78% BRAMs: 56.43% DSPs: 9.55%
14s:	14s:	150 MHz Slices: 62.58% Luts: 56.34% Registers: 32.44% BRAMs: 62.62% DSPs: 12.35%
1cfa:	1cfa:	120 MHz Slices: 64.49% Luts: 43.07% Registers: 24.72% BRAMs: 56.43% DSPs: 9.55%
te09_l	Not imple-	file_io_manr_sobel - Linux video processing application that reads input video from a
(With Linux	mented as	file and writes out the output video to a file. Video processing includes Motion Adaptive
SD file R/W	standalone	Noise Reduction (MANR) followed by a Sobel filter for edge detection. You can run it by
functions)		supplying a 1080p YUV422 file as input with limiting number of frames to a maximum
		of 20 frames.
2if:	NA	120 MHz Slices: 75.92% Luts: 51.33% Registers: 30.58% BRAMs: 63.21% DSPs: 10.91%
1qf:	NA	120 MHz Slices: 75.98% Luts: 51.32% Registers: 30.66% BRAMs: 63.21% DSPs: 10.91%
14s:	NA	120 MHz Slices: 76.30% Luts: 67.15% Registers: 40.15% BRAMs: 71.50% DSPs: 12.62%
1cfa:	NA	120 MHz Slices: 76.29% Luts: 51.31% Registers: 30.66% BRAMs: 63.21% DSPs: 10.91%
te10_l	Not imple-	file_io_optical - Linux video processing application that reads input video from a file
(With Linux	mented as	and writes out the output video to a file. Video processing performs LK Dense Optical
SD file R/W	standalone	Flow over two Full HD frames video file. You can run it by supplying a 1080p YUV422 file
functions)		route85_1920x1080.yuv as input.
2if:	NA	120 MHz Slices: 99.50% Luts: 79.55% Registers: 51.34% BRAMs: 88.93% DSPs: 40.91%
1qf:	NA	50 MHz Slices: 99.35% Luts: 79.58% Registers: 46.96% BRAMs: 88.93% DSPs: 40.91%
14s:	NA	SW impl. Slices: 43.88% Luts: 40.25% Registers: 19.66% BRAMs: 50.00% DSPs: 12.35%
1cfa:	NA	100 MHz Slices: 98.62% Luts: 79.60% Registers: 50.90% BRAMs: 88.93% DSPs: 40.91%
+011	+o11 c	full array 2d. This is a simple example of accessing full data from 2D array
	lett_s	Tun_array_zu - This is a simple example of accessing full data from zD array.
2if:	2if:	150 MHz Slices: 60.20% Luts: 41.98% Registers: 23.00% BRAMs: 55.36% DSPs: 12.27%
2if: 1qf:	2if: 1qf:	150 MHz Slices: 60.20% Luts: 41.98% Registers: 23.00% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.52% Luts: 41.91% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27%
2if: 1qf: 14s:	2if: 1qf: 14s:	150 MHz Slices: 60.20% Luts: 41.98% Registers: 23.00% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.52% Luts: 41.91% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.86% Luts: 54.84% Registers: 30.23% BRAMs: 61.21% DSPs: 15.88%
2if: 1qf: 14s: 1cfa:	2if: 1qf: 14s: 1cfa:	150 MHz Slices: 60.20% Luts: 41.98% Registers: 23.00% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.52% Luts: 41.91% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.86% Luts: 54.84% Registers: 30.23% BRAMs: 61.21% DSPs: 15.88% 150 MHz Slices: 59.91% Luts: 41.92% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27%
2if: 1qf: 14s: 1cfa: te12_l	2if: 1qf: 14s: 1cfa: te12_s	150 MHz Slices: 60.20% Luts: 41.98% Registers: 23.00% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.52% Luts: 41.91% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.86% Luts: 54.84% Registers: 30.23% BRAMs: 61.21% DSPs: 15.88% 150 MHz Slices: 59.91% Luts: 41.92% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% hello_vadd - This is a basic hello world kind of example which demonstrates how to
2if: 1qf: 14s: 1cfa: te12_l	2if: 1qf: 14s: 1cfa: te12_s	150 MHz Slices: 60.20% Luts: 41.98% Registers: 23.00% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.52% Luts: 41.91% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.86% Luts: 54.84% Registers: 30.23% BRAMs: 61.21% DSPs: 15.88% 150 MHz Slices: 59.91% Luts: 41.92% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% hello_vadd - This is a basic hello world kind of example which demonstrates how to achieve vector addition using hardware function.
2if: 1qf: 14s: 1cfa: te12_l 2if:	2if: 1qf: 14s: 1cfa: te12_s 2if:	Itin_array_2d - mis is a simple example of accessing foil data from 2D array.150 MHz Slices: 60.20% Luts: 41.98% Registers: 23.00% BRAMs: 55.36% DSPs: 12.27%150 MHz Slices: 59.52% Luts: 41.91% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27%150 MHz Slices: 59.86% Luts: 54.84% Registers: 30.23% BRAMs: 61.21% DSPs: 15.88%150 MHz Slices: 59.91% Luts: 41.92% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27%hello_vadd - This is a basic hello world kind of example which demonstrates how to achieve vector addition using hardware function.150 MHz Slices: 60.06% Luts: 41.46% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55%
2if: 1qf: 14s: 1cfa: te12_l 2if: 1qf: 1qf:	2if: 1qf: 14s: 1cfa: te12_s 2if: 1qf: 1qf:	150 MHz Slices: 60.20% Luts: 41.98% Registers: 23.00% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.52% Luts: 41.91% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.86% Luts: 54.84% Registers: 30.23% BRAMs: 61.21% DSPs: 15.88% 150 MHz Slices: 59.91% Luts: 41.92% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% hello_vadd - This is a basic hello world kind of example which demonstrates how to achieve vector addition using hardware function. 150 MHz Slices: 60.06% Luts: 41.46% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 58.95% Luts: 41.48% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55%
2if: 1qf: 14s: 1cfa: te12_l 2if: 1qf: 1qf: 1qf: 1qf: 1qf: 1qf: 1qf: 14s: 1cfa: 1qf: 14s: 1cfa: 1cfa: 1qf: 1cfa: 1c	2if: 1qf: 14s: 1cfa: te12_s 2if: 1qf: 1qf: 1qf: 1qf: 14s: 2if: 1qf: 1qf: 1qf: 14s: 1cfa: 1	150 MHz Slices: 60.20% Luts: 41.98% Registers: 23.00% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.52% Luts: 41.91% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.86% Luts: 54.84% Registers: 30.23% BRAMs: 61.21% DSPs: 15.88% 150 MHz Slices: 59.91% Luts: 41.92% Registers: 23.09% BRAMs: 61.21% DSPs: 12.27% hello_vadd - This is a basic hello world kind of example which demonstrates how to achieve vector addition using hardware function. 150 MHz Slices: 60.06% Luts: 41.46% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 58.95% Luts: 41.48% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 57.40% Luts: 54.29% Registers: 29.57% BRAMs: 58.41% DSPs: 12.35%
2if: 1qf: 14s: 1cfa: te12_l 2if: 1qf: 1cfa: 1cfa:	2if: 1qf: 14s: 1cfa: te12_s 2if: 1qf: 1qfa:	150 MHz Slices: 60.20% Luts: 41.98% Registers: 23.00% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.52% Luts: 41.91% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.86% Luts: 54.84% Registers: 30.23% BRAMs: 61.21% DSPs: 15.88% 150 MHz Slices: 59.91% Luts: 41.92% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% hello_vadd - This is a basic hello world kind of example which demonstrates how to achieve vector addition using hardware function. 150 MHz Slices: 60.06% Luts: 41.46% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 58.95% Luts: 41.48% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 57.40% Luts: 54.29% Registers: 29.57% BRAMs: 53.21% DSPs: 12.35% 150 MHz Slices: 59.52% Luts: 41.46% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 58.95% Luts: 41.48% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 57.40% Luts: 54.29% Registers: 29.57% BRAMs: 53.21% DSPs: 9.55%
2if: 1qf: 14s: 1cfa: te12_l 2if: 1qf: 1qf: 1qf: 1qf: 1cfa: te13_l	2if: 1qf: 14s: 1cfa: te12_s 2if: 1qf: 1qf: 1qf: 1qf: 1qf: 1qf: 1qf: 1qf: 1qf: 1qf: 1cfa: 1	150 MHz Slices: 60.20% Luts: 41.98% Registers: 23.00% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.52% Luts: 41.91% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.86% Luts: 54.84% Registers: 30.23% BRAMs: 61.21% DSPs: 15.88% 150 MHz Slices: 59.91% Luts: 41.92% Registers: 23.09% BRAMs: 61.21% DSPs: 12.27% hello_vadd - This is a basic hello world kind of example which demonstrates how to achieve vector addition using hardware function. 150 MHz Slices: 50.06% Luts: 41.46% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 57.40% Luts: 41.48% Registers: 29.57% BRAMs: 53.21% DSPs: 12.35% 150 MHz Slices: 57.40% Luts: 41.50% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.50% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.50% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.50% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55%
2if: 1qf: 14s: 1cfa: te12_l 2if: 1qf: 1qf: 1qf: 1qf: 1cfa: te13_l	2if: 1qf: 14s: 1cfa: te12_s 2if: 1qf: 1cfa: te13_s	 150 MHz Slices: 60.20% Luts: 41.98% Registers: 23.00% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.52% Luts: 41.91% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.86% Luts: 54.84% Registers: 30.23% BRAMs: 61.21% DSPs: 15.88% 150 MHz Slices: 59.91% Luts: 41.92% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% hello_vadd - This is a basic hello world kind of example which demonstrates how to achieve vector addition using hardware function. 150 MHz Slices: 60.06% Luts: 41.46% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 57.40% Luts: 54.29% Registers: 29.57% BRAMs: 53.21% DSPs: 12.35% 150 MHz Slices: 59.52% Luts: 41.50% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.50% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.50% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.60% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.50% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.60% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.60% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55%
tell_l 2if: 1qf: 14s: 1cfa: tel2_l 2if: 1qf: 14s: 1cfa: tel3_l 2if: 1cfa: 1cfa: tel3_l 2if:	tell_s 2if: 1qf: 14s: 1cfa: tel2_s 2if: 1qf: 14s: 1cfa: tel3_s 2if: 1cfa: tel3_s 2if:	150 MHz Slices: 60.20% Luts: 41.98% Registers: 23.00% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.52% Luts: 41.91% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.86% Luts: 54.84% Registers: 30.23% BRAMs: 61.21% DSPs: 15.88% 150 MHz Slices: 59.91% Luts: 41.92% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% hello_vadd - This is a basic hello world kind of example which demonstrates how to achieve vector addition using hardware function. 150 MHz Slices: 58.95% Luts: 41.46% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 57.40% Luts: 54.29% Registers: 29.57% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.46% Registers: 29.57% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 57.40% Luts: 54.29% Registers: 29.57% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.30% Registers: 29.57% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 51.30% Luts: 41.30% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.30% Registers: 29.57% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.30% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.30% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.30% Registers: 23.02% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 61.30% Luts: 42.13% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55%
tell_l 2if: 1qf: 14s: 1cfa: tel2_l 2if: 1qf: 14s: 1cfa: tel3_l 2if: 1cfa: tel3_l 2if: 1cfa: tel3_l	2if: 1qf: 14s: 1cfa: te12_s 2if: 1qf: 14s: 1cfa: te12_s 2if: 1qf: 14s: 1cfa: te13_s 2if: 1qf:	150 MHz Slices: 60.20% Luts: 41.98% Registers: 23.00% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.52% Luts: 41.91% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.86% Luts: 54.84% Registers: 30.23% BRAMs: 61.21% DSPs: 15.88% 150 MHz Slices: 59.91% Luts: 41.92% Registers: 23.09% BRAMs: 61.21% DSPs: 12.27% hello_vadd - This is a basic hello world kind of example which demonstrates how to achieve vector addition using hardware function. 150 MHz Slices: 60.06% Luts: 41.46% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 58.95% Luts: 41.46% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 57.40% Luts: 54.29% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.48% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 57.40% Luts: 54.29% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.50% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.50% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 61.30% Luts: 42.13% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.30% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55%
leff_1 2if: 1qf: 14s: 1cfa: te12_l 2if: 1qf: 14s: 1cfa: te13_l 2if: 1qf: 14s:	2if: 1qf: 14s: 1cfa: te12_s 2if: 1qf: 14s: 2if: 1qf: 14s: 2if: 1qf: 14s: 1cfa: te13_s 2if: 1qf: 14s:	150 MHz Slices: 60.20% Luts: 41.98% Registers: 23.00% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.52% Luts: 41.91% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.86% Luts: 54.84% Registers: 30.23% BRAMs: 61.21% DSPs: 15.88% 150 MHz Slices: 59.91% Luts: 41.92% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% hello_vadd - This is a basic hello world kind of example which demonstrates how to achieve vector addition using hardware function. 150 MHz Slices: 60.06% Luts: 41.46% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 58.95% Luts: 41.46% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 57.40% Luts: 54.29% Registers: 29.57% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.48% Registers: 29.57% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.40% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.50% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 61.30% Luts: 42.13% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 59.48% Luts: 55.12% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55%
tell_' 2if: 1qf: 14s: 1cfa: tel2_l 2if: 1qf: 14s: 1cfa: tel3_l 2if: 1qf: 14s: 1cfa: 2if: 1qf: 14s: 1cfa:	tell_s 2if: 1qf: 14s: 1cfa: tel2_s 2if: 1qf: 14s: 1cfa: tel3_s 2if: 1cfa: tel3_s 2if: 1cfa: tel3_s 2if: 1cfa:	150 MHz Slices: 60.20% Luts: 41.98% Registers: 23.00% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.52% Luts: 41.91% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.86% Luts: 54.84% Registers: 30.23% BRAMs: 61.21% DSPs: 15.88% 150 MHz Slices: 59.91% Luts: 41.92% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% hello_vadd - This is a basic hello world kind of example which demonstrates how to achieve vector addition using hardware function. 150 MHz Slices: 60.06% Luts: 41.46% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 58.95% Luts: 41.48% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 57.40% Luts: 54.29% Registers: 29.57% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.50% Registers: 29.57% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 61.30% Luts: 42.13% Registers: 23.02% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 61.30% Luts: 42.13% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55%
leff_i 2if: 1qf: 1cfa: te12_l 2if: 1qf: 14s: 1cfa: te13_l 2if: 1qf: 1cfa: te13_l 2if: 1qf: 1cfa: te14s: 1cfa: te14_l	leff_s 2if: 1qf: 14s: 1cfa: te12_s 2if: 1qf: 14s: 1cfa: te13_s 2if: 1qf: 14s: 1cfa: te13_s 2if: 1qf: 1cfa: te13_s 2if: 1qf: 14s: 1cfa: te14_s	 150 MHz Slices: 60.20% Luts: 41.98% Registers: 23.00% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.52% Luts: 41.91% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.86% Luts: 54.84% Registers: 30.23% BRAMs: 61.21% DSPs: 15.88% 150 MHz Slices: 59.91% Luts: 41.92% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% hello_vadd - This is a basic hello world kind of example which demonstrates how to achieve vector addition using hardware function. 150 MHz Slices: 60.06% Luts: 41.46% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 57.40% Luts: 41.48% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 57.40% Luts: 54.29% Registers: 29.57% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.50% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 61.30% Luts: 42.13% Registers: 23.02% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 61.30% Luts: 42.13% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 59.48% Luts: 55.12% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.13% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 59.48% Luts: 55.12% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 59.48% Luts: 55.12% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 59.48% Luts: 55.12% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 62.19% Luts: 42.21% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 62.19% Luts: 42.21% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 160p_fusion - This example will demonstrate how to fuse two loops into one to improve the performance of a C/C++ bardware function
tell_i 2if: 1qf: 1cfa: tel2_l 2if: 1qf: 14s: 1cfa: tel3_l 2if: 1qf: 14s: 1cfa: tel3_l 2if: 1qf: 1cfa: tel4_l 2if:	Leff_s 2if: 1qf: 14s: 1cfa: te12_s 2if: 1qf: 14s: 1cfa: te13_s 2if: 1qf: 1cfa: te13_s 2if: 1qf: 1cfa: te14_s: 1cfa: te14_s 2if: 1cfa: 1cfa: te14_s	 150 MHz Slices: 60.20% Luts: 41.98% Registers: 23.00% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.52% Luts: 41.91% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.86% Luts: 54.84% Registers: 30.23% BRAMs: 61.21% DSPs: 15.88% 150 MHz Slices: 59.91% Luts: 41.92% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% hello_vadd - This is a basic hello world kind of example which demonstrates how to achieve vector addition using hardware function. 150 MHz Slices: 60.06% Luts: 41.46% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 58.95% Luts: 41.48% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 57.40% Luts: 54.29% Registers: 29.57% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.50% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 61.30% Luts: 42.13% Registers: 23.02% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 61.30% Luts: 42.13% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 59.48% Luts: 55.12% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.41% Luts: 42.21% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 62.19% Luts: 42.21% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 62.19% Luts: 42.21% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 62.19% Luts: 42.21% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 62.19% Luts: 42.21% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 62.19% Luts: 42.21% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 62.19% Luts: 42.21% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 62.19% Luts: 42.21% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.41% Luts: 42.73% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55%
tell_l 2if: 1qf: 14s: 1cfa: tel2_l 2if: 1qf: 14s: 1cfa: tel3_l 2if: 1qf: 14s: 1cfa: tel3_l 2if: 1qf: 14s: 1cfa: tel4_l 2if: 1cfa: tel4_l	Leff_s 2if: 1qf: 14s: 1cfa: te12_s 2if: 1qf: 14s: 1cfa: te13_s 2if: 1qf: 14s: 1cfa: te13_s 2if: 1qf: 14s: 1cfa: te14_s 2if: 1cfa: te14_s 2if: 1cfa:	 150 MHz Slices: 60.20% Luts: 41.98% Registers: 23.00% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.52% Luts: 41.91% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.86% Luts: 54.84% Registers: 30.23% BRAMs: 61.21% DSPs: 15.88% 150 MHz Slices: 59.91% Luts: 41.92% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% hello_vadd - This is a basic hello world kind of example which demonstrates how to achieve vector addition using hardware function. 150 MHz Slices: 60.06% Luts: 41.46% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 57.40% Luts: 41.48% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.50% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.50% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 61.30% Luts: 42.13% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.41% Luts: 42.21% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.41% Luts: 42.73% Registers: 23.02% BRAMs: 53.21% DSPs: 15.00% 150 MHz Slices: 61.41% Luts: 42.73% Registers: 23.79% BRAMs: 53.21% DSPs: 15.00% 150 MHz Slices: 61.41% Luts: 42.73% Registers: 23.79% BRAMs: 53.21% DSPs: 15.00%
leff_i 2if: 1qf: 14s: 1cfa: te12_l 2if: 1qf: 14s: 1cfa: te13_l 2if: 1qf: 14s: 1cfa: te13_l 2if: 1qf: 14s: 1cfa: te14_l 2if: 1qf: 1qf: 1qf: 1qf:	leff_s 2if: 1qf: 14s: 1cfa: te12_s 2if: 1qf: 14s: 1cfa: te13_s 2if: 1qf: 14s: 1cfa: te13_s 2if: 1qf: 14s: 1cfa: te14_s 2if: 1cfa: te14_s 2if: 1qf: 1cfa: te14_s	 Itin_array_zd - Fins is a simple example of accessing full data from 2D array. 150 MHz Slices: 60.20% Luts: 41.98% Registers: 23.00% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.52% Luts: 41.91% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.86% Luts: 54.84% Registers: 30.23% BRAMs: 61.21% DSPs: 15.88% 150 MHz Slices: 59.91% Luts: 41.92% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% hello_vadd - This is a basic hello world kind of example which demonstrates how to achieve vector addition using hardware function. 150 MHz Slices: 60.06% Luts: 41.46% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 57.40% Luts: 54.29% Registers: 29.57% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.48% Registers: 29.57% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.50% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 61.30% Luts: 42.13% Registers: 23.02% BRAMs: 53.6% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 62.19% Luts: 42.21% Registers: 23.02% BRAMs: 53.21% DSPs: 12.35% 150 MHz Slices: 61.41% Luts: 42.73% Registers: 23.77% BRAMs: 53.21% DSPs: 15.00% 150 MHz Slices: 60.62% Luts: 42.72% Registers: 23.79% BRAMs: 53.21% DSPs: 15.00% 150 MHz Slices: 60.62% Luts: 42.72% Registers: 23.79% BRAMs: 53.21% DSPs: 15.00%
tell_i 2if: 1qf: 14s: 1cfa: tel2_i 2if: 1qf: 14s: 1cfa: tel3_i 2if: 1qf: 14s: 1cfa: tel4_i 2if: 1qf: 14s: 1cfa: tel4_i 2if: 1qf: 14s: 1cfa: tel4_i 2if: 1qf:	leff_s 2if: 1qf: 14s: 1cfa: te12_s 2if: 1qf: 14s: 1cfa: te13_s 2if: 1qf: 14s: 1cfa: te13_s 2if: 1qf: 14s: 1cfa: te14_s 2if: 1qf: 14s: 1cfa: te14_s	101_array_2d - This is a simple example of accessing full data non 20 array. 150 MHz Slices: 60.20% Luts: 41.98% Registers: 23.00% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.52% Luts: 41.91% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.86% Luts: 54.84% Registers: 30.23% BRAMs: 61.21% DSPs: 15.88% 150 MHz Slices: 59.91% Luts: 41.92% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% hello_vadd - This is a basic hello world kind of example which demonstrates how to achieve vector addition using hardware function. 150 MHz Slices: 60.06% Luts: 41.46% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 58.95% Luts: 41.48% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 57.40% Luts: 54.29% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.50% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 61.30% Luts: 42.13% Registers: 23.02% BRAMs: 53.60% DSPs: 9.55% 150 MHz Slices: 61.30% Luts: 42.13% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.41% Luts: 42.21% Registers: 23.02% BRAMs: 51.21% DSPs: 12.35% 150 MHz Slices: 62.19% Luts: 42.73% Registers: 23.02% BRAMs: 53.21% DSPs: 12.35% 150 MHz Slices: 61.41% Luts: 42.73% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.41% Luts: 42.73% Registers: 23.02% BRAMs: 55.312% DSPs: 15.00% 150 MHz Slices: 61.4
tell_l 2if: 1qf: 14s: 1cfa: tel2_l 2if: 1qf: 14s: 1cfa: tel3_l 2if: 1qf: 14s: 1cfa: tel4_l 2if: 1qf: 14s: 1cfa: tel4_l 2if: 1qf: 14s: 1cfa: tel4_l	Leff_s 2if: 1qf: 14s: 1cfa: te12_s 2if: 1qf: 14s: 1cfa: te13_s 2if: 1qf: 14s: 1cfa: te13_s 2if: 1qf: 14s: 1cfa: te14_s 2if: 1qf: 14s: 1cfa: te14_s 2if: 1qf: 14s: 1cfa: te14_s	 Itin_array_zd - This is a simple example of accessing foll data noni 2D array. 150 MHz Slices: 60.20% Luts: 41.98% Registers: 23.00% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.52% Luts: 41.91% Registers: 30.23% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.86% Luts: 54.84% Registers: 30.23% BRAMs: 61.21% DSPs: 15.88% 150 MHz Slices: 59.91% Luts: 41.92% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% hello_vadd - This is a basic hello world kind of example which demonstrates how to achieve vector addition using hardware function. 150 MHz Slices: 60.06% Luts: 41.46% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 58.95% Luts: 41.48% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 57.40% Luts: 54.29% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.50% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.50% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 61.30% Luts: 42.13% Registers: 23.02% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 61.30% Luts: 42.13% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 62.19% Luts: 42.21% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.41% Luts: 42.21% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.41% Luts: 42.73% Registers: 23.02% BRAMs: 53.21% DSPs: 12.35% 150 MHz Slices: 61.41% Luts: 42.73% Registers: 23.79% BRAMs: 53.21% DSPs: 15.00% 150 MHz Slices: 60.62% Luts: 42.72% Registers: 23.79% BRAMs: 53.21% DSPs: 15.00% 150 MHz Slices: 60.62% Luts: 42.72% Registers: 23.79% BRAMs: 53.21% DSPs: 15.00% 150 MHz Slices: 60.62% Luts: 42.72% Registers: 23.79% BRAMs: 53.21% DSPs: 15.00% 150 MHz Slices: 60.64% Luts: 42.73% Registers: 23.79% BRAMs: 53.21% DSPs: 15.00% 150 MHz Slices: 60
tell_i 2if: 1qf: 14s: 1cfa: tel2_i 2if: 1qf: 14s: 1cfa: tel3_i 2if: 1qf: 14s: 1cfa: tel4_i 2if: 1qf: 14s: 1cfa: tel4_i 2if: 1qf: 14s: 1cfa: tel5_i	tell_s 2if: 1qf: 14s: 1cfa: tel2_s 2if: 1qf: 14s: 1cfa: tel3_s 2if: 1qf: 14s: 1cfa: tel3_s 2if: 1qf: 14s: 1cfa: tel4_s 2if: 1qf: 14s: 1cfa: tel4_s 2if: 1qf: 14s: 1cfa: tel4_s 1cfa: tel5_s	 Ibin_array_zu - This is a simple example of accessing full data mon 2D array. 150 MHz Slices: 60.20% Luts: 41.98% Registers: 23.00% BRAMs: 55.36% DSPs: 12.27% 150 MHz Slices: 59.52% Luts: 41.91% Registers: 30.23% BRAMs: 61.21% DSPs: 15.88% 150 MHz Slices: 59.91% Luts: 41.92% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27% hello_vadd - This is a basic hello world kind of example which demonstrates how to achieve vector addition using hardware function. 150 MHz Slices: 60.06% Luts: 41.46% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 58.95% Luts: 41.48% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 57.40% Luts: 54.29% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.48% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.48% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.48% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 59.52% Luts: 41.48% Registers: 23.02% BRAMs: 53.21% DSPs: 9.55% 150 MHz Slices: 61.30% Luts: 42.13% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55% 150 MHz Slices: 61.41% Luts: 42.13% Registers: 23.02% BRAMs: 51.21% DSPs: 12.35% 150 MHz Slices: 61.41% Luts: 42.14% Registers: 23.02% BRAMs: 51.21% DSPs: 12.35% 150 MHz Slices: 61.41% Luts: 42.14% Registers: 23.02% BRAMs: 51.21% DSPs: 15.00% 150 MHz Slices: 61.41% Luts: 42.73% Registers: 23.79% BRAMs: 53.21% DSPs: 15.00% 150 MHz Slices: 60.64% Luts: 42.72% Registers: 23.79% BRAMs: 53.21% DSPs: 15.00% 150 MHz Slices: 60.64% Luts: 42.72% Registers: 23.79% BRAMs: 53.21% DSPs: 15.00% 150 MHz Slices: 60.64% Luts: 42.71% Registers: 23.79% BRAMs: 53.21% DSPs: 15.00% 150 MHz Slices: 60.

signal processing

http://zs.utia.cas.cz

27/75

2if:	2if:	150 MHz Slices: 75.26% Luts: 53.49% Registers: 29.28% BRAMs: 53.21% DSPs: 15.45%
1qf:	1qf:	150 MHz Slices: 73.72% Luts: 53.43% Registers: 29.51% BRAMs: 53.21% DSPs: 15.45%
14s:	14s:	150 MHz Slices: 74.11% Luts: 69.93% Registers: 38.63% BRAMs: 58.41% DSPs: 20.00%
1cfa:	1cfa:	150 MHz Slices: 74.62% Luts: 53.42% Registers: 29.51% BRAMs: 53.21% DSPs: 15.45%
te16_l	te16_s	loop_pipeline - This example demonstrates how loop pipelining can be used to improve
_	_	the performance of a hardware function.
2if:	2if:	150 MHz Slices: 60.06% Luts: 41.46% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55%
1qf:	1qf:	150 MHz Slices: 58.95% Luts: 41.48% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55%
14s:	14s:	150 MHz Slices: 57.40% Luts: 54.29% Registers: 29.57% BRAMs: 58.41% DSPs: 12.35%
1cfa:	1cfa:	150 MHz Slices: 59.52% Luts: 41.50% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55%
te17_l	te17_s	loop_reorder - This is a simple example of matrix multiplication (Row x Col) to
		demonstrate how to achieve better pipeline II factor by loop reordering. It performs
		int32 matrix multiplication C[32,32] = A[32,32] * B[32,32]
2if: 4.27x	2if: 7.12x	150 MHz Slices: 68.44% Luts: 45.64% Registers: 26.45% BRAMs: 76.79% DSPs: 56.36%
1qf: 4.66x	1qf: 7.72x	150 MHz Slices: 67.90% Luts: 44.64% Registers: 27.53% BRAMs: 76.79% DSPs: 56.36%
14s: 4.92x	14s: 7.85x	150 MHz Slices: 66.91% Luts: 58.41% Registers: 36.04% BRAMs: 89.25% DSPs: 72.94%
1cfa:	1cfa:	150 MHz Slices: 67.88% Luts: 44.65% Registers: 27.53% BRAMs: 76.79% DSPs: 56.36%
te18_l	te18_s	shift_register - This example demonstrates how to shift values in each clock cycle.
2if: 1.96x	2if: 4.19x	150 MHz Slices: 63.03% Luts: 42.68% Registers: 24.19% BRAMs: 53.21% DSPs: 24.55%
1qf: 2.02x	1qf: 4.54x	150 MHz Slices: 62.23% Luts: 42.40% Registers: 24.52% BRAMs: 53.21% DSPs: 24.55%
14s: 2.10x	14s: 4.52x	150 MHz Slices: 61.28% Luts: 55.41% Registers: 32.10% BRAMs: 58.41% DSPs: 31.76%
1cfa:	1cfa:	150 MHz Slices: 62.87% Luts: 42.41% Registers: 24.52% BRAMs: 53.21% DSPs: 24.55%
te19_l	te19_s	<pre>sys_port - This is a simple example which demonstrates sys_port usage.</pre>
2if:	2if:	120 MHz Slices: 83.92% Luts: 54.55% Registers: 34.77% BRAMs: 65.00% DSPs: 9.55%
1qf:	1qf:	120 MHz Slices: 80.92% Luts: 54.53% Registers: 34.77% BRAMs: 65.00% DSPs: 9.55%
14s:	14s:	120 MHz Slices: 81.75% Luts: 71.42% Registers: 45.53% BRAMs: 73.86% DSPs: 12.35%
1cfa:	1cfa:	120 MHz Slices: 84.68% Luts: 54.56% Registers: 34.77% BRAMs: 65.00% DSPs: 9.55%
te20_l	te20_s	systolic_array - Matrix multiplication implemented as systolic array.
2if: 0.066x	2if: 0.162x	150 MHz Slices: 68.55% Luts: 47.36% Registers: 26.67% BRAMs: 53.21% DSPs: 61.36%
1qf: 0.077x	1qf: 0.177x	150 MHz Slices: 66.75% Luts: 46.26% Registers: 27.82% BRAMs: 53.21% DSPs: 61.36%
14s: 0.068x	14s: 0.198x	150 MHz Slices: 67.15% Luts: 60.51% Registers: 36.42% BRAMs: 58.41% DSPs: 79.41%
1cfa:	1cfa:	150 MHz Slices: 70.08% Luts: 46.29% Registers: 27.82% BRAMs: 53.21% DSPs: 61.36%
te21_l	te21_s	wide_memory_rw - Wide memory read write 64 bit wide.
2if:	2if:	150 MHz Slices: 60.07% Luts: 39.74% Registers: 23.34% BRAMs: 55.36% DSPs: 9.55%
1qf:	1qf:	150 MHz Slices: 59.34% Luts: 39.77% Registers: 23.34% BRAMs: 55.36% DSPs: 9.55%
14s:	14s:	150 MHz Slices: 58.41% Luts: 52.05% Registers: 30.55% BRAMs: 61.21% DSPs: 12.35%
1cfa:	1cfa:	150 MHz Slices: 59.59% Luts: 39.78% Registers: 23.34% BRAMs: 55.36% DSPs: 9.55%

28/75

http://zs.utia.cas.cz

Akademie věd České republiky Ústav teorie informace a automatizace AV ČR, v.v.i.

Installation and use of the Release Evaluation Package – standalone examples

In case of standalone target:

- (1) In Win 7 or Win 10 (32bit or 64bit PC), unzip the basic evaluation package TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL.zip to directory of your choice. We will use: c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\
- (2) Select one of the examples (t01_s ... t21_s) and copy the content of sd_card directory to the SD card. Example: Copy BOOT.bin from c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release \te01_s\Release\sd_card\BOOT.bin to the root of the SD card as single file.
- (3) Connect USB cable from J7 connector to the PC. It will serve as ARM terminal and JTAG line.
- (4) Connect another USB cable to the USBUART pmod module present in the J5 connector to the PC. It will serve as MicroBlaze terminal.
- (5) Power ON the carrier board and open putty (or similar) terminal client for both USB serial lines. Set the serial communication to: [speed 115200, data bits 8, stop bits 1, parity none and flow control None] in both cases.
- (6) Insert SD card to the TE0706-02 or TE0703-05 carrier board.
- (7) Reset the carrier board (S2 button).

- The standalone system will start. See *Figure 8*.

- The ARM terminal will present output from the t01_s example.
- The MicroBlaze terminal will present output from the 8xSIMD EdkDSP IP. See Figure 8.
- (8) In PC, open the Vivado Lab tool 2017.4.1 See Figure 9.

Open Hardware Manager

Press Auto Connect icon in Hardware window

- Open description of debug nets present in file, thus specifying the probes file as:

c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release
\te01_s\Release\debug_nets.ltx

- Set the ILA trigger conditions and observe process of computation in the 8xSIMD EdkDSP IP. See *Figure 10, Figure 11, Figure 12.*

- Open new perspective and observe the chip temperature. See *Figure 13*.
- (9) Close Vivado Lab 2017.4.1 tool project.
- (10) Remove SD card and reprogram it in PC to test another example.
- (11) Go to step (6).

29/75

SoM: TE0720-03-21 F SC REV:05 MAC: D8 80 39 DE 68 E0 ARMCPU0: MB0 reset removed, ARM waiting ... ARMCPU0: MB0 indicates - running ... Number of CPU cycles running application in software: 164000 Number of CPU cycles running application in hardware: 24760 Speed up: 6.62359 Note: Speed up is meaningful for real hardware execution only, not f or emulation. TEST PASSED

P COM57 - PuTTY	
MB0 : (EdkDSP 8xSIMD) FIR room response 1120 MFLOPs	·
MB0 : (HW FP unit) Add near-end signal	
MB0 : (EdkDSP 8xSIMD) LMS Identification 728 MFLOPs	
MB0 : (HW FP unit) LMS Identification 9 MFLOPs	
MB0 : (EdkDSP 8xSIMD) OK	
MB0 : (EdkDSP 8xSIMD) Write firmware	
MB0 : (EdkDSP 8xSIMD) Capabilities1 = 13ffff	
MB0 : (EdkDSP 8xSIMD) VZ2A 'worker1' OK	
MB0 : (EdkDSP 8xSIMD) VB2A 'worker1' OK	
MB0 : (EdkDSP 8xSIMD) VZ2B 'worker1' OK	
MB0 : (EdkDSP 8xSIMD) VA2B 'worker1' OK	
MBO : (EdkDSP 8xSIMD) VADD 'workerl' OK	
MBO : (EdkDSP 8xSIMD) VADD BZ2A 'worker1' OK	
MBO : (EdkDSP 8xSIMD) VADD AZ2B 'worker1' OK	
MBU : (EdkDSP 8xSIMD) VSUB 'Workerl' OK	
MBU : (EdkDSP 8xSIMD) VSUB BZZA 'WORKERI' OK	
MBU : (EdkDSP 8xSIMD) VSUB AZZB 'Workerl' OK	
MBU : (EdkDSP 8XSIMD) VMULT WORKERI OK	
MBU : (EdkDSP 6XSIMD) VMULT_BZZA WORKERI'. OK	
MBU : (EdkDSP 6XSIMD) VMULT AZZB WORKETI . OK	
MBO : (EdvDSP 0XSIMD) VEROD WORKEII OK	
MBO : (EdvDSP 8xSIMD) VMAC WOIKEII OK	
MBO : (EdkDSP 8xSIMD) VPROD S8 'worker1' OK	
MBO : (EdkDSP 8xSIMD) VDIV 'worker1' OK	
HDO. (BARDE ORDIND) VDIV WORKCII OK	
MB0 : (EdkDSP 8xSIMD) Write firmware	
MB0 : (EdkDSP 8xSIMD) Capabilities1 = 13ffff	
MB0 : (HW FP unit) Far-end signal	
MB0 : (EdkDSP 8xSIMD) FIR room response 1120 MFLOPs	
MB0 : (HW FP unit) Add near-end signal	
MB0 : (EdkDSP 8xSIMD) LMS Identification 728 MFLOPs	
	.

Figure 8: Release demo t01_s. ARM and 8xSIMD EdkDSP terminal output.

Representation of the second s

http://zs.utia.cas.cz

30/75

project_89 - [C:/Users/kadlec/project_20]	t_89/project_8	9.[pr] - Vivado Lab Edition 2017.4			
<u>F</u> ile <u>E</u> dit <u>T</u> ools <u>W</u> indow La <u>v</u> out	<u>V</u> iew <u>H</u> elp	Q~ Quick Access			
	16 18 X	Dashboard 👻	😬 Default Layout 🛛 🗸 🗸		
Hardware ?	_ 0 C ×	hw_ila_1 × hw_vios ×	? 🗆 🖸		
	•	Waveform - hw_ila_1	? _ 🗆 ×		
Name	Status	<u>د</u>			
V localhost (1)	Connected	Optio			
✓ ■ xilinx_tcf/Digilent/2516330004	Open	ard c			
@ arm_dap_0 (0)	N/A	o qua			
WINDO (Questione Magnitus)	Programmed	Da			
ADC (System Monitor)					
37 hw via 1 (////)		No content			
	on - Outputs r				
Properties ?	$ \square$ \square \times				
	- → Q				
		Settings - hw Status - × ? _ Trigger Setup - hw_ila_1 × Capture Setup - hw_ila_1	? _ 🗆		
		ở ► ► ► = 0.			
Select an object to see properti	85	Core status			
		Capture status - Window 1 of 1 No probes exist for xc7z020_1. Specify the probes file	and refresh the device .		
		Window sample 0 of 9192			
Tcl Console × Messages Serial I/O	Links Serial I	O Scans	2 _ 🗆 11		
open_hw_target: Time (s): cpu = 00:00:04 ; elapsed = 00:00:06 . Memory (MB): peak = 1164.629 ; gain = 508.293					
<pre>refresh_hw_device -update_hw_probes_false [lindex [get_hw_devices_xc7z020_1] 0]</pre>					
INFO: [Labtools 27-2302] Device xc/z020 (JTAG device index = 1) is programmed with a design that has 1 ILA core(s). INFO: [Labtools 27-2302] Device xc7z020 (JTAG device index = 1) is programmed with a design that has 1 VIO core(s).					
· <					
Type a Tcl command here					

Figure 9: Release demo t01_s. Vivado Lab Tool is open.

The Vivado Lab tool is connected to the chip. You have to specify the probes file (See Figure 10).

c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release\te01 _s\Release\debug_nets.ltx

Names and parameters of probes are added to the ILA Waveform window. See Figure 10.

Use + to select probes used for triggering, and select the condition for the trigger for each probe and their combinations (use AND as default).

Some of debug probes can be used to trigger the capturing of data. The ILA can be triggered from the EdkDSP firmware running on the PicoBlaze6 running inside of the (8xSIMD) EdkDSP unit.

Figure 10: Release demo t01_s. Probes file is specified. Trigger conditions are set.

In Xilinx SDK 2017.4.1, open the EdkDSP C soure file: c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SDK_Workspace\e dkdsp\a\f2.c

See section of the **LMS** C code firmware. This C code includes the additional call to the **pb2dfu_set()** function used for selective triggering of the ILA scope in specified point of computation of the EdkDSP accelerator.

```
pb2dfu set(0x20, 0); // trigger (0x00 on port 0x20) for the ILA
                 for (i = 0; i < 4; i++) {
                        for (j = 2; j <= 3; j++) {
                                lms(j, n, op);
                                pb2mb_eoc(led);
                         }
                 }
                 ...
signal processing
                                                                                       http://zs.utia.cas.cz
                                                   32/75
                                                                                     © 2018 ÚTIA AV ČR, v.v.i.
          Akademie věd České republiky
 ŪΠΑ
          Ústav teorie informace a automatizace AV ČR, v.v.i.
                                                                  All disclosure and/or reproduction rights reserved
```


Figure 11: Release demo t01_s. Details of the 8xSIMD EdkDSP LMS filter computation.

In Vivado Lab Tool 2017.4.1, in the ILA configuration page, change the trigger condition to: (bce_port_wr ==1) AND (probe10[0:7] ==0x20) AND (probe9[0:7] ==0x00). (bce_port_wr ==1) AND (bce_port_id[0:7]==0x20) AND (bce_port[0:7]==0x00). Selecion on the first line corresponds to the System ILA input to the EdkDSP probes on the second line. See connecrions of EdkDSP and System ILA on Figure 3.

In Vivado Lab Edition 2017.4.1, arm the System ILA core by pressing **Run Trigger** button in **Hardware** window. Armed System ILA core will wait until the recompiled EdkDSP firmware comes to the point, where PicoBlaze6 calls function $pb2dfu_set(0x20, 0)$.

In case of TE0720-03-2IF, ILA captures 8K samples of all debug probes at 120 MHz. In case of TE0720-03-1QF, ILA captures 8K samples of all debug probes at 100 MHz. In case of TE0720-03-14S-1C, ILA captures 2K samples of all debug probes at 100 MHz.

Data are captured and sent via jtag USB connection in Vivado Lab Edition 2017.4.1 for visualisation and analysis in the waveform window. This snapshot stores the detailed trace of the FIR filter computation. See *Figure 12*.

signar (Department of Drocessing		http://zs.utia.cas.cz
		33/75	
ŪTIA			© 2018 ÚTIA AV ČR, v.v.i. All disclosure and/or reproduction rights reserved

Figure 12: Release demo t01 s. Details of the 8xSIMD EdkDSP FIR filter computation.

In Vivado Lab. Tool, in the ILA configuration page, change the trigger condition to (probe9[0:7]==0x01). This corresponds to the condition bce port[0:7]==0x01. See connections in Figure 3. ILA will capture start of the FIR filter. See Figure 12. The PicoBlaze C code of the FIR example is listed in Figure 19.

The Vivado Lab. screens presented in Figure 11 and Figure 12 display also the 1024 samples before the trigger event. This mode is set in the trigger mode settings window. Screens display how the PicoBlaze6 controller reset signal bce_r_pb is deactivated. Picoblaze6 reads the 8 bit parameters op and n from the MicroBlaze before the trigger evet. See complete program listing in *Figure 19* with these initial lines of the PicoBlaze6 SW:

```
pb2dfu_set(0x20, 1); // trigger (0x01 on port 0x20) for the ILA
                 for (i = 0; i < 4; i++) {
                         for (j = 2; j <= 3; j++) {
                                fir(j, n, op);
                                pb2mb_eoc(led);
                         }
                 }
                 ...
signal processing
                                                                                        http://zs.utia.cas.cz
                                                    34/75
                                                                                      © 2018 ÚTIA AV ČR, v.v.i.
          Akademie věd České republiky
          Ústav teorie informace a automatizace AV ČR, v.v.i.
                                                                   All disclosure and/or reproduction rights reserved
```

ŪTĬA

Figure 13: Release demo t01_s. Standalone demo supports measurements of the chip temperature.

35/75

The standalone demos support measurement of the chip temperature in a new dashboard connected to the XADC system monitor.

http://zs.utia.cas.cz

Installation and use of Release Evaluation Package – Linux examples

In case of Linux target:

- (1) In Win 7 or Win 10 (32bit or 64bit PC), unzip the basic evaluation package TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL.zip to directory of your choice. We will use: c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\
- (2) Select one of the examples (t01_I ... t21_I) and copy the content of sd_card directory to the SD card. Example. Copy the content (and the subdirectory with its content) from the directory: c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release \te01_1\Release\sd_card\ to the root of the SD card.
- (3) Connect Mini USB cable from J7 connector to the PC. It will serve as ARM terminal and JTAG line.
- (4) Connect Micro USB cable from to the USBUART pmod module present in the J5 connector) to the PC. It will serve as MicroBlaze terminal.
- (5) Power ON the carrier board. And open putty (or similar) terminal client for both USB serial lines.
 Set the serial communication to: [speed 115200, data bits 8, stop bits 1, parity none and flow control None] in both cases.
- (6) Insert SD card to the TE0706-02 or TE0703-05 carrier board.
- (7) Reset the carrier board.

36/75	
. processing	http://zs.utia.cas.cz
<pre>type user name: root type password: root Mount SD card to the directory (See Figure 15) /mnt by typing: mount /dev/mmcblk0p1 /mnt - Change directory (See Figure 15) to /mnt cd /mnt -Compile firmware for the PicoBlaze6 by the EdkDSP C compiler (See Figure 15): ./edkdsp/tools/cc_fx.sh ./edkdsp/a or ./edkdsp/tools/cc_fx.sh ./edkdsp/b or ./edkdsp/tools/cc_f. - The PicoBlaze6 C source code f0.c f1.c f2.c and f3.c from the directory . are compiled by the EdkDSP C compiler to the firmware files (See Figure 15): ./f0.dec ./f1.dec ./f2.dec ./f3.dec - The ARM terminal will present output from the EdkDSP C compiler - The MicroBlaze terminal is not active. EdkDSP is not programmed yet. - Start the Linux user space application by typing: ./t01_1.elf - The ARM terminal will present output from the t01_1.elf example. See Figure - The MicroBlaze terminal will present output from the t01_1.elf example. See Figure - The MicroBlaze terminal will present output from the t01_1.elf example. See Figure - The MicroBlaze terminal will present output from the t01_1.elf example. See Figure - The MicroBlaze terminal will present output from the t01_1.elf example. See Figure - The MicroBlaze terminal will present output from the 8xSIMD EdkDSP IP working with new firmware programs as re-compiled by the EdkDSP C compiler from the C source code files: f0.c f1.c f2.c and f3.c _ from the directory ./edkdsp/a</pre>	x.sh ./edkdsp/c /edkdsp/a e 16.
- The Linux system will start. See Figure 14.	

signau
The output from the 8xSIMD EdkDSP is identical to the standalone output. See Figure 8.

(8) In PC, open the Vivado Lab tool. See *Figure 9*.

Open Vivado Lab tools 2017.4.1 hardware manager.

- Press Auto Connect icon in Hardware window

- Open description of debug nets present in file, thus specifying the probes file. See *Figure 10*.

c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release
\te01_l\Release\debug_nets.ltx

- Set the ILA trigger conditions and observe process of computation in the 8xSIMD EdkDSP IP. See *Figure 11*, *Figure 12*.

- (9) Close Vivado Lab tool project.
- (10) Remove SD card and reprogram it in PC to test another example.
- (11) Go to step (6).

Figure 14: Release demo t01_l. Linux start.

Putty COM65 - Putty SPSmDx/yTswl23FbYhsu3kEQAMZSsbKYfh9Ex7yJ root@petalinux . Fingerprint: md5 c3:ab:f7:b6:57:f4:02:4f:80:bb:5a:28:5e:2a:a9:63 dropbear. Init Start Init End Starting syslogd/klogd: done Starting tcf-agent: OK PetaLinux 2017.4 petalinux /dev/ttyPS0 petalinux login: root Password: root@petalinux:~# mount /dev/mmcblk0p1 /mnt root@petalinux:~# cd /mnt root@petalinux:/mnt# ls BOOT.bin edkdsp f1.dec f3.dec te01 l.elf f2.dec sds f0.dec image.ub root@petalinux:/mnt# ./edkdsp/tools/cc_fx.sh ./edkdsp/a EDKDSPCC : f0.c ... EDKDSPPSM: f0.psm ... EDKDSPCC : fl.c ... EDKDSPPSM: fl.psm ... EDKDSPCC : f2.c ... EDKDSPPSM: f2.psm ... EDKDSPCC : f3.c ... EDKDSPPSM: f3.psm .. root@petalinux:/mnt#

Figure 15: Release demo t01_l; Login, Compilation of firmware in the EdkDSP C Compiler.

38/75

http://zs.utia.cas.cz


```
Putty COM65 - Putty
```

```
_ 🗆 🗙
Init Start
                                                                     .
Init End
Starting syslogd/klogd: done
Starting tcf-agent: OK
PetaLinux 2017.4 petalinux /dev/ttyPS0
petalinux login: root
Password:
root@petalinux:~# mount /dev/mmcblk0p1 /mnt
root@petalinux:~# cd /mnt
root@petalinux:/mnt# ls
BOOT.bin
            edkdsp
                        f1.dec
                                    f3.dec
                                                te01 l.elf
sds
            f0.dec
                        f2.dec
                                    image.ub
root@petalinux:/mnt# ./edkdsp/tools/cc fx.sh ./edkdsp/a
EDKDSPCC : f0.c ...
EDKDSPPSM: f0.psm ...
EDKDSPCC : f1.c ...
EDKDSPPSM: f1.psm ...
EDKDSPCC : f2.c ...
EDKDSPPSM: f2.psm ...
EDKDSPCC : f3.c ...
EDKDSPPSM: f3.psm ...
root@petalinux:/mnt# ./te01 l.elf
/dev/mem opened.
Memory mapped at address 0xb6f1c000.
Memory mapped at address 0xae395000.
ARMCPU0: Write firmware ...
ARMCPU0: Open input file f0.dec ... OK
ARMCPU0: Open input file f1.dec ... OK
ARMCPU0: Open input file f2.dec ... OK
ARMCPU0: Open input file f3.dec ... OK
ARMCPU0: Close input file f0.dec ... OK
ARMCPU0: Close input file f1.dec ... OK
ARMCPU0: Close input file f2.dec ... OK
ARMCPU0: Close input file f3.dec ... OK
ARMCPU0: Write firmware Done.
Reset for 1 sec. ... Done.
ARMCPU0: MB0 reset removed, ARM waiting ... Done.
                                                                     =
ARMCPU0: MB0 indicates - running ...
Number of CPU cycles running application in software: 164480
Number of CPU cycles running application in hardware: 48380
Speed up: 3.39975
TEST PASSED
root@petalinux:/mnt#
```


http://zs.utia.cas.cz

9. Installation and Use of Debug Evaluation Package

The debug evaluation package is offered to the ECSEL PRODUCTIVE 4.0 project partners [8] on their written request to UTIA for free. See the license conditions listed in next sections of this report.

The debug evaluation package supports:

- Compilation from C source code and debug for the MicroBlaze processor for Linux and standalone targets
- Creation and Release of SD cards with new compiled MicroBlaze SW and new compiled Picoblaze6 firmware for Linux and standalone targets.
- In-circuit Logic Analyser (ILA) JTAG based inspection/observation/debug of the 8xSIMD EdkDSP IP.
 - In case of TE0720-03-2IF, ILA captures 8K samples of debug probes at 120 MHz.
 - In case of TE0720-03-1QF, ILA captures 8K samples of debug probes at 100 MHz.
 - In case of TE0720-03-14S-1C, ILA captures 2K samples of debug probes at 100 MHz.
- Embedded Compilation from a C/ASM source code to firmware for the reprogrammable PicoBlaze6 finite state machine (FSM) scheduling inside of the 8xSIMD EdkDSP IP core the floating point computation sequences performed in the 8xSIMD data flow unit (DFU).
 - This embedded compilation is supported for the Linux examples.
- The standalone examples also support ILA and additionally can display the on-chip temperature via JTAG.
- The extended evaluation package requires the Xilinx SDK 2017.4.1 tools (download is free). SDK serves for compilation of MicroBlaze code, download of compiled MicroBlaze code via JTAG and for the debug of this code in parallel with the ILA inspection/observation/debug of the EdkDSP IP core.
- The In-circuit Logic Analyser (ILA) JTAG based inspection/observation/debug can be performed from the free Xilinx Lab Vivado 2017.4.1 tool installed on Win7 (64bit) or Win 10 (64bit) PC.
- The Linux target examples support 1G Bit Ethernet, SSH telnet and file system management tools like the Total Commander for an Ethernet based access from PC to the SD card files and editing of these files from user PC.

The extended evaluation package provides 21 precompiled designs for the Linux target and 19 precompiled designs for the standalone target as described in *Table 12*.

40/75

υπа

http://zs.utia.cas.cz

Installation and use of debug evaluation package – standalone examples

In case of standalone target:

(1) In Win 7 or Win 10 (64 bit PC), unzip the debug evaluation package: TE0720_EdkDSP_2if_te706_ila8k_Debug_INSTALL.zip to directory of your choice. We will use: c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_INSTALL\

In Xilinx SDK 2017.4.1 create a new workspace in the directory of your choice. We will use: c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_SDK_Workspace\

Eclipse Launcher						
Select a directory as workspace Xilinx SDK uses the workspace directory to store its preferences and development artifacts.						
Workspace:	C:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_SDK_Worksr. ▼ Browse					
 Use this as the default and do not ask again Recent Workspaces 						
	OK Cancel					

Figure 17: Create new SDK 2017.4.1 workspace.

http://zs.utia.cas.cz

sok Import	NAME AND ADDRESS OF A DESCRIPTION OF A D					
Import Projects Select a directory to search for existing Eclipse projects.						
 Select root directory: Select archive file: Projects: 	C:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_INSTALL\SDSoC_PFM\2if\SDK_Workspace	Browse Browse				
Image: C:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_INSTALL\SDSoC_PFM\2if\SDK_Workspace\edkdsp) Select All Image: C:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_INSTALL\SDSoC_PFM\2if\SDK_Workspace\edkdsp_fp12_1x8_l) Select All Image: C:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_INSTALL\SDSoC_PFM\2if\SDK_Workspace\edkdsp_fp12_1x8_s) Select All Image: C:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_INSTALL\SDSoC_PFM\2if\SDK_Workspace\edkdsp_fp12_1x8_s) Select All Image: C:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_INSTALL\SDSoC_PFM\2if\SDK_Workspace\mb01_bsp_0) Refresh Image: C:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_INSTALL\SDSoC_PFM\2if\SDK_Workspace\mb01_bw_platform_0) Refresh						
Options □ Search for nested projects ☑ Copy projects into workspace □ Hide projects that already exist in the workspace						
Working sets	ing sets	New Select				
?	< Back Next > Finish	Cancel				

Figure 18: Import the extended debug evaluation package projects into the SDK Workspace.

Import (with copy) all SDK projects from: c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_INSTALL\SDSoC_PFM\2if\SDK_Workspace\ to the new SDK workspace. c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_SDK_Workspace\ Both Microblaze projects will be compiled automatically by the SDK for the debug configuration.

- (2) Select one of the examples (t01_s ... t21_s) and copy the content of the sd_card directory to the SD card. Example: Copy BOOT.bin to the root of the SD card from:
 c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_INSTALL\SDSoC_PFM\2if\SD_debug\te01_ s\Release\sd_card\BOOT.bin
- (3) Connect Mini USB cable from J7 connector to the PC. It will serve as ARM terminal and JTAG line.
- (4) Connect Micro USB cable to the USBUART pmod module present in the J5 connector to the PC. It will serve as MicroBlaze terminal.
- (5) Power ON the carrier board. And open putty (or similar) terminal client for both USB serial lines. Set the serial communication to [speed 115200, data bits 8, stop bits 1, parity none and flow control None] in both cases.

42/75

http://zs.utia.cas.cz

Figure 19: SDK compiles MicroBlaze SW projects for the standalone debug target.

43/75

- (6) Insert SD card to the TE0706-02 or TE0703-05 carrier board.
- (7) Reset the carrier board.
 - The standalone system will start.
 - The ARM terminal will present output from the **t01_s** example.
 - The Arm application is waiting for the MicroBlaze.

http://zs.utia.cas.cz

Akademie věd České republiky Ústav teorie informace a automatizace AV ČR, v.v.i.

B COM65 - PuTTY	
Xilinx First Stage Boot Loader (TE modified) Release 2017.4 May 7 2018-08:27:58	^
Device IDCODE -> 23727093 Revision -> 2 Device -> 7 (7z020)	
SoM: TE0720-03-21 F SC REV:05 MAC: D8 80 39 DE 68 E0 ARMCPU0: place 0xb8000000 at start of MB0 vectors ARMCPU0: MB0 reset removed, ARM waiting	III
	-

Figure 20: Debug demo t01_l; Execution of the ./t01_s.elf example from the SD card.

- The Xilinx SDK project

c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_SDK_Workspace\edkdsp_fp12_1x8_s
includes PicoBlaze6 firmware header files fill_f0_program_store.h,

fill_f1_program_store.h, fill_f2_program_store.h and fill_f3_program_store.h
Note: These files can be recompiled from the C source code by the EdkDSP C compiler in the
Linux target session as described in the next section).

- In the Xilinx SDK workspace, compile the edkdsp_fp12_1x8_s project with the existing (or new, recompiled) PicoBlaze6 firmware headers fill_f0_program_store.h,
- fill_f1_program_store.h, fill_f2_program_store.h and fill_f3_program_store.h.
 In the Xilinx SDK workspace, select Debug of MicroBlaze project edkdsp_fp12_1x8_s. In the Debug
 Configurations, select "No reset", unselect "Run ps7_init", unselect "Run ps7_post_config" click "Apply".

eate, manage, and run configurations			K
 Image: Second Sec	Name: edkdsp_fp12_1 Target Setup Debug Type: Standak Connection: Local Device: Auto De Hardware platform: Processor: Bitstream file: Initialization file: No reset Program FPGA Run ps7_init Run ps7_post_cor	x8_s Debug Application & Source & STDIO Connection & Debugger Options Commo one Application Debug New etect Select mb01_hw_platform_0 microblaze_0 s7_init.tcl Summary of operations to be performed Following operations to be performed before launching the debugg 1. C\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_SDK_Workspace\edi ebug\edkdsp_fp12_1x8_s.elf will be downloaded to the processor 'mi	n Search, Browse Search, Browse er. croblaze_0'
lter matched 6 of 12 items		Rev	ert Apply

Figure 21: Debug demo t01_s; Open project edkdsp_fp12_1x8_s for debug.

TE0720_EdkDSP_2if_te706_ila8k_Debug_SDK_Workspace - Debug - edkdsp_fp12_1x8_s/src/f	p12_1x8_s.c - Xilinx SDK					
File Edit Source Refactor Navigate Search Project Run Xilinx Window Help						
[□] ▼ 📓 🐘 🛊 ▼ 🔾 ▼ 🔍 🕨 💷 💐 🌫 💀 🕼 📓 🖏 🖬 🐼	⋪ - M = + +	Quick Access 🗄 😰 🗟 🔯				
🏠 Debug 🛛 🦌 🙀 🖬 😨 🗖 🗖	🗱 Variables 🛛 💁 Breakp 🚻 Registers 💿	🛚 XSCT C 🔳 Emulati 🛋 Modules 🛛 🗖				
edkdsp_fp12_1x8_s Debug [Xilinx C/C++ application (GDB)]		‱ ⇒t 🕒 💕 🗶 🔆 🗹 🔻				
🛚 🖑 XMD Target Debug Agent (12.05.18 19:15) (Suspended)	Name	Value				
4 🔊 Thread [1] (Suspended: Breakpoint hit.)	▷ ➡ ConfigPtr	0x4326f405 =				
1 main() fp12_1x8_s.c:2994 0x2811c5a0	⇔= Status	-933411581				
mb-gdb (12.05.18 19:15)	Immediate Stress St	1572701843				
C:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_SDK_Workspace\edkdsp_fp12_1x8_	⇔= test_base_val	2047865155				
	test_base_ptr	0xf1800432				
	•	•				
		^				
		~				
(III)	•	▶				
Ip12_1x8_s.c ≅	- 8	E Outline 🛛 🗖 🗖				
	*	□ 1 ³ N N ● H マ				
<pre>// static XIntc intc;</pre>		stdio.h				
<pre>static XTmrCtr axi_timer_0_Timer;</pre>		platform.h				
		xparameters.h				
init_placform();		xtmrctr.h				
XMutex Config *ConfigPtr:		tmrctr_header.h				
XStatus Status;		# TMRCTR_DEVICE_ID				
u32 TimeoutCount = 0;		# TIMER_COUNTER_0				
		TimerCounter : XTmrCtr				
u_{32} test_base_val = 139200; u_{32} *test base ntr = 0x28000000.		xmutex.h				
u32 iiii=0;	=	# MUTEX_DEVICE_ID				
u32 jjjj=0;		# MUTEX_NUM				
	-	Mutex : XMutex				
4	•	xparameters.h				
🖳 Console 🛿 🧔 Tasks 🖳 SDK Terminal 🦹 Problems 🔘 Executables 👘 🛎 💥 🗎 🗟	R	SDK Log 🚺 Memory 🛛 🖓 🗖				
edkdsp_fp12_1x8_s Debug [Xilinx C/C++ application (GDB)] mb-gdb (12.05.18 19:15)						
.gdbinit: No such file or directory.						
Reading symbols from C:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_SDK_Workspace\edkdsp_fp12_1x8_s\Deb						
0x28100000 in _start ()						
Temporary breakpoint 2, main () at/src/fp12 1x8 s.c:2994						
2994 init_platform();						
¥						

Figure 22: Debug demo t01_s; Start the free-run from the debugger.

- In the SDK debugger, step through the MicroBlaze source code, inspect content of variables, set the breakpoints, step through the code and finally select the free run of the MicroBlaze code.
- At this stage, the ARM terminal will present the output from the ARM t01_s.elf example. See Figure 23.

Figure 23: Debug demo t01_s. Arm started EdkDSP and runs SDSoC akcelerátor demo.

http://zs.utia.cas.cz

© 2018 ÚTIA AV ČR, v.v.i. All disclosure and/or reproduction rights reserved

The MicroBlaze terminal will present output from the debugged MicroBlaze and the 8xSIMD EdkDSP IP core. See Figure 24.

🛃 COM57 - PuTTY

```
X
MB0 : Start of MB ... Done.
                                                                     .
MB0 : Read firmware ... Done.
Initialize TmrCtr for axi timer 0...
MB0 : (EdkDSP 8xSIMD) Write firmware ...
MB0 : (EdkDSP 8xSIMD) Capabilities1 = 13ffff
MB0 :
      (HW FP unit
                   ) Far-end signal ...
MB0 :
      (EdkDSP 8xSIMD) FIR room response ... 1117 MFLOPs
      (HW FP unit ) Add near-end signal ...
MB0
                                              728 MFLOPs
      (EdkDSP 8xSIMD) LMS Identification ...
MB0
MB0 :
      (HW FP unit ) LMS Identification ...
                                                3 MFLOPs
MB0 : (EdkDSP 8xSIMD) OK
MB0 : (EdkDSP 8xSIMD) Write firmware ...
      (EdkDSP 8xSIMD) Capabilities1 = 13ffff
MB0 :
      (EdkDSP 8xSIMD) VZ2A 'worker1'
MB0
                                              OK
      (EdkDSP 8xSIMD) VB2A 'worker1'
MB0
                                              OK
MB0 :
      (EdkDSP 8xSIMD)
                      VZ2B 'worker1'
                                              OK
      (EdkDSP 8xSIMD) VA2B 'worker1'
MB0 :
                                              OK
MB0 :
      (EdkDSP 8xSIMD) VADD 'worker1'
                                              OK
                                      . . . . . . .
      (EdkDSP 8xSIMD) VADD BZ2A 'worker1' ...
MB0 :
                                              OK
      (EdkDSP 8xSIMD) VADD AZ2B 'worker1'
MB0
                                              OK
MB0
      (EdkDSP 8xSIMD) VSUB 'worker1'
                                              OK
      (EdkDSP 8xSIMD) VSUB BZ2A 'worker1' ..
MB0
                                              OK
      (EdkDSP 8xSIMD) VSUB AZ2B 'worker1'
MB0
                                          .. OK
      (EdkDSP 8xSIMD) VMULT 'worker1'
MB0 :
                                      ..... OK
MB0 : (EdkDSP 8xSIMD) VMULT BZ2A 'worker1'
                                            . OK
MB0 : (EdkDSP 8xSIMD) VMULT AZ2B 'worker1'
                                              OK
MB0 : (EdkDSP 8xSIMD) VPROD 'worker1'
                                              OK
      (EdkDSP 8xSIMD) VMAC 'worker1'
MB0 :
                                              OK
      (EdkDSP 8xSIMD) VMSUBAC 'worker1'
MB0
                                              OK
MB0 :
      (EdkDSP 8xSIMD)
                      VPROD S8 'worker1' ... OK
MB0 : (EdkDSP 8xSIMD) VDIV 'worker1'
                                      .... OK
```

Figure 24: Debug demo t01_s; MicroBlaze project output (Compiled for Debug).

(8) In PC, open the Vivado Lab tool. See Figure 9.

- Open Hardware Manager.
- Press Auto Connect icon in Hardware window to connect to the board via JTAG line.
- Open description of debug nets present in file, thus specifying the probes file as:

c:\TS74\TE0720 EdkDSP 2if te706 ila8k Debug INSTALL\SDSoC PFM\2if\SD debug\ te01_s\Release\debug_nets.ltx

- Set the ILA trigger conditions and observe process of computation in the 8xSIMD EdkDSP IP. See Figure 10, Figure 11, Figure 12.
- Open new perspective and observe the chip temperature. See Figure 13. Close Vivado Lab tool project.

46/75

signal processing

http://zs.utia.cas.cz

- (9) In SDK debugger, stop MicroBlaze processor and close the debug session.
- (10) Remove SD card and reprogram it in the PC to test another example.
- (11) Go to step (6).

Installation and use of Debug Evaluation Package – Linux examples

- (1) In Win 7 or Win 10 (64bit PC), unzip the basic evaluation package TE0720_EdkDSP_2if_te706_ila8k_Debug_INSTALL.zip to directory of your choice. We will use: c:\TS74\TE0720_EdkDSP_14s_te706_ila2k_Debug_INSTALL\ Open new Xilinx SDK 2017.4.1 workspace in the directory c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug\SDK_Workspace\ Import (with copy) all SDK projects from c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_INSTALL\SDSoC_PFM\2if\SDK_Workspace\ to the new SDK.
- (2) Select one of the examples (t01_1 ... t21_1) and copy the content of sd_card directory to the SD card. Example. Copy content of the directory from c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_INSTALL\SDSoC_PFM\2if\SD_debug\ te01_1\Release\sd_card\ to the root of the SD card/
- (3) Connect USB cable from J7 connector to the PC. It will serve as ARM terminal and JTAG line.
- (4) Connect USB cable to the USBUART pmod module present in the J5 connector to the PC. It will serve as MicroBlaze terminal.
- (5) Power ON the carrier board. And open putty (or similar) terminal client for both USB serial lines. Set the serial communication to [speed 115200, data bits 8, stop bits 1, parity none and flow control None] in both cases.

47/75

- (6) Insert SD card to the TE0706-02 or TE0703-05 carrier board.
- (7) Reset the carrier board.
 - The Linux system will start. See Figure 25.
 - Type the Linux user name and password:
 - root

root

http://zs.utia.cas.cz

Putty COM65 - Putty Password: root@petalinux:~# mount /dev/mmcblk0p1 /mnt root@petalinux:~# cd /mnt root@petalinux:/mnt# ls _sds BOOT.BIN f0.dec f2.dec image.ub README.txt te01 l.elf edkdsp f1.dec f3.dec root@petalinux:/mnt# ./edkdsp/tools/cc fx.sh ./edkdsp/a EDKDSPCC : f0.c ... EDKDSPPSM: f0.psm ... EDKDSPCC : f1.c ... EDKDSPPSM: f1.psm ... EDKDSPCC : f2.c ... EDKDSPPSM: f2.psm ... EDKDSPCC : f3.c ... EDKDSPPSM: f3.psm ... root@petalinux:/mnt# ./edkdsp/tools//cs fx.sh ./edkdsp/a EDKDSPCC : f0.c ... EDKDSPASM: f0.psm ... Generated M function file in the M file ././fill f0 program store.m Generated C header file in the H file ./fill f0 program store.h EDKDSPCC : fl.c ... EDKDSPASM: f1.psm ... Generated M function file in the M file ././fill f1 program store.m Generated C header file in the H file ./fill f1 program store.h EDKDSPCC : f2.c ... EDKDSPASM: f2.psm ... Generated M function file in the M file ././fill f2 program store.m Generated C header file in the H file ./fill f2 program store.h EDKDSPCC : f3.c ... EDKDSPASM: f3.psm ... Generated M function file in the M file ././fill f3 program store.m Generated C header file in the H file ./fill f3 program store.h root@petalinux:/mnt# ./te01_1.elf /dev/mem opened. Memory mapped at address 0xb6f1c000. Memory mapped at address 0xae395000. ARMCPU0: Write firmware ... ARMCPU0: Open input file f0.dec ... OK ARMCPU0: Open input file f1.dec ... OK ARMCPU0: Open input file f2.dec ... OK ARMCPU0: Open input file f3.dec ... OK ARMCPU0: Close input file f0.dec ... OK ARMCPU0: Close input file f1.dec ... OK Ξ ARMCPU0: Close input file f2.dec ... OK ARMCPU0: Close input file f3.dec ... OK ARMCPU0: Write firmware Done. ARMCPU0: place 0x28100000 at start of MB0 vectors Reset for 1 sec. ... Done. ARMCPU0: MB0 reset removed, ARM waiting ...

Figure 25: Compiled EdkDSP firmware. Started debug demo - Linux target t01_l.

http://zs.utia.cas.cz

48/75

- Mount SD card to the directory (See Figure 25) /mnt by typing: mount /dev/mmcblk0p1 /mnt
- Change directory to /mnt
- cd /mnt
- Compile firmware for the PicoBlaze6 by the EdkDSP C compiler (see *Figure 25*) : ./edkdsp/tools/cc_fx.sh ./edkdsp/a
- The PicoBlaze6 C source code files from the directory ./edkdsp/a
 ./edkdsp/a/f0.c ./edkdsp/a/f1.c ./edkdsp/a/f2.c ./edkdsp/a/f3.c are compiled by the EdkDSP C compiler to the firmware files:
 ./f0.dec ./f1.dec ./f2.dec ./f3.dec
- Optionally, you can also compile the PicoBlaze6 firmware into header files for the standalone target. Compile firmware for the PicoBlaze6 by the EdkDSP C compiler. (See Figure 25): ./edkdsp/tools/cs fx.sh ./edkdsp/a

Generated header files with PicoBlaze6 firmware for the standalone target EdkDSP IP target are created and stored in the SD card root directory:

./fill_f0_program_store.h ./fill_f1_program_store.h

./fill_f2_program_store.h ./fill_f3_program_store.h

These headers serve for the standalone MicroBlaze projects. Headers are compiled directly into the debugged MicroBlaze standalone application as described above.

- Execute the ARM Linux application See *Figure 25*.
- The ARM terminal will present output from the EdkDSP C compiler
- The MicroBlaze terminal will present output from the 8xSIMD EdkDSP IP
- Start the Linux application by typing ./t01_l.elf
- The ARM terminal will present output from the **t01_l.elf** example. The Arm application is waiting for the MicroBlaze in this stage.
- In the Xilinx SDK environment on the PC, select debug project (See Figure 26):

c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_SDK_Workspace\edkdsp_fp12_1x8_1

Create, manage, and run configurations	
 Target Communication Framework Frarget Communication Framework Kilinx C/C++ application (GDB) Kilinx C/C++ application (System Debugger on QEMU) Xilinx C/C++ application (System Debugger) 	Name: edkdsp_fp12_1x8_l Debug Target Setup Application Source STDIO Connection Connection Local New Device: Auto Detect Select Hardware platform: mb01_hw_platform_0 Processor: microblaze_0 Bitstream file: Initialization file: ps7_init.cl Search Browse Following operations to be performed Following operations will be performed before launching the debugger. 1. Program FPGA Run ps7_init Run ps7_init Run ps7_post_config Enable Cross-Triggering
Filter matched 6 of 12 items	Revert Apply
0	Debug Close

Figure 26: Select MicroBlaze project edkdsp_fp12_1x8_l for debug.

- In the SDK debugger, step through the MicroBlaze source code, inspect the content of variables, set breakpoints etc. See *Figure 27*.
- In the SDK debugger, select free run of the MicroBlaze code. See Figure 27.
- The MicroBlaze terminal will present output from the 8xSIMD EdkDSP IP working with new firmware programs as re-compiled by the EdkDSP C compiler from the C source code files:

./edkdsp/a/f0.c, ./edkdsp/a/f1.c, ./edkdsp/a/f2.c and ./edkdsp/a/f3.c The terminal Output is identical to *Figure 24*.

- The ARM terminal will continue to present output from the **t01_1.elf** example. See *Figure 28*.

- In ARM terminal, type:
 - ls -lr

to see listing of files compiled by the EdkDSP C compiler. See Figure 28.

The compiled header files fill_f0_program_store.h, fill_f1_program_store.h,

fill_f2_program_store.h, and fill_f3_program_store.h can be used as new source code for the standalone MicroBlaze project

c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_SDK_Workspace\edkdsp_fp12_1x8_s

Figure 27: Select free run of MicroBlaze project edkdsp_fp12_1x8_l.

(8) In PC, open the Vivado Lab tool hardware manager. See *Figure 9*.

- Press Auto Connect icon in Hardware window to connect to the board via JTAG line

- Open description of debug nets present in file, thus specifying the probes file

- Open description of debug nets present in file

c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_INSTALL\SDSoC_PFM\2if\SD_debug\te01_s\ Release\debug_nets.ltx

- Set the ILA trigger conditions. See Figure 10, Figure 11, Figure 12. Close Vivado Lab tool project.

(9) In SDK debugger, stop MicroBlaze processor and close the debug session

(10) Exit from Linux by typing on the ARM terminal: exit

(11) Remove SD card and reprogram it in the PC to test another example.

(12) Go to step (6).

х Putty COM65 - Putty ARMCPU0: Close input file f2.dec ... OK ARMCPU0: Close input file f3.dec ... OK ARMCPU0: Write firmware Done. ARMCPU0: place 0x28100000 at start of MB0 vectors Reset for 1 sec. ... Done. ARMCPU0: MB0 reset removed, ARM waiting ... Done. ARMCPU0: MB0 indicates - running ... Number of CPU cycles running application in software: 164782 Number of CPU cycles running application in hardware: 48030 Speed up: 3.43081 TEST PASSED root@petalinux:/mnt# ls -lr total 13504 68656 May 7 2018 te01 l.elf 1 root disk -rwxrwx---32 Apr 16 10:21 sds trace data.dat disk -rwxrwx--disk 9986400 Apr 16 08:16 image.ub 1 root -rwxrwx---11547 Apr 16 10:09 fill f3 program store.m rwxrwx--disk 1 root 11240 Apr 16 10:09 fill_f3_program_store.h rwxrwx---1 root disk 11895 Apr 16 10:09 fill_f2_program_store.m -rwxrwx---1 root disk disk 11588 Apr 16 10:09 fill_f2_program_store.h -rwxrwx---1 root -rwxrwx---1 root disk 11482 Apr 16 10:09 fill_f1_program_store.m disk 11175 Apr 16 10:09 fill_f1_program_store.h rwxrwx---1 root disk 11482 Apr 16 10:09 fill f0 program store.m rwxrwx---1 root rwxrwx---1 root disk 11175 Apr 16 10:09 fill f0 program store.h 10475 Apr 16 10:09 f3.psm -rwxrwx---1 root disk 1 root disk 20689 Apr 16 10:09 f3.log -rwxrwx---2221 Apr 16 10:09 f3.dec -rwxrwx---1 root disk 1 root disk 11867 Apr 16 10:09 f2.psm rwxrwx---23557 Apr 16 10:09 f2.log 1 root disk rwxrwx---1 root disk 2861 Apr 16 10:09 f2.dec -rwxrwx----rwxrwx---1 root disk 10102 Apr 16 10:09 fl.psm 19398 Apr 16 10:09 f1.log -rwxrwx---1 root disk disk 2076 Apr 16 10:09 fl.dec -rwxrwx---1 root -rwxrwx---1 root disk 10102 Apr 16 10:09 f0.psm rwxrwx---1 root disk 19398 Apr 16 10:09 f0.log disk 2076 Apr 16 10:09 f0.dec -rwxrwx---1 root drwxrwx---6 root disk 32768 May 12 2018 edkdsp 32768 May 12 2018 2 root disk drwxrwx--sds 186 May 7 2018 README.txt 1 root disk rwxrwx---2942248 May 2018 BOOT.BIN rwxrwx---1 root disk coot@petalinux:/mnt#

department of Figure 28: Output from ARM MicroBlaze fort t01_l. Compiled EdkDSP firmware.

51/75

http://zs.utia.cas.cz

Updating of the release SD card images for new standalone-release-target

Modified Picoblaze6 C source code can be compiled to firmware headers in the embedded EdkDSP C compiler (Linux target). Resulting headers can be included in the SDK MicroBlaze standalone release target project. See *Figure 19.* The standalone-release-target SD card image can be updated by re-compilation of the (possibly modified) C source code for the MicroBlaze in the SDK project with included updated PicoBlaze firmware header files. See *Figure 29.*

Create Boot Image	May 19 Million Lt.	-					X
Create Boot Imag Creates Zynq Boot I	Create Boot Image Creates Zyng Boot Image in .bin format from given FSBL elf and partition files in specified output folder.						
Architecture: Zynq	•						
Create new BIF file	Import from existing BIF fill	e					
Import BIF file path:	C:\TS74\TE0720_EdkDSP_2if_te	706_ila8k_Rel	ease_INSTALL	SDSoC_PFM\2if\SD_rel	ease\te01	_s\Release\uboot\te01_s.bif	Browse
Basic Security							
Output BIF file path:	C:\TS74\TE0720_EdkDSP_2if_t	e706_ila8k_Re	elease_INSTALI	\SDSoC_PFM\2if\SD_re	lease\te0	1_s\Release\uboot\te01_s.bif	Browse
UDF data:		Browse					Browse
Split	Output format: BIN 🔻						
Output path:	C:\TS74\TE0720_EdkDSP_2if_t	e706_ila8k_Re	lease_INSTAL	\SDSoC_PFM\2if\SD_re	lease\te0	1_s\Release\uboot\BOOT.bin	Browse
Boot image partition	S						
File path		Encrypted	Authentic				Add
(bootloader) .\zynq	_fsbl.elf	none	none				Delete
.\zsys_wrapper.bit		none	none				
.\edkdsp_fp12_1x8_s	s.elf	none	none				Edit
Up							
?				Preview BIF Ch	anges	Create Image	Cancel

Figure 29: Create BOOT.bin for the t01_s demo.

See the content of directory:

c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release\te01 _s\Release\uboot\

The new **BOOT.bin** image can be created from these five files:

t01_s.bif, zynq_fsbl.elf, zynq_wrapper.bit.elf, t01_s.elf, edkdsp_fp12_1x8_s.elf Replace an old edkdsp_fp12_1x8_s.elf file with the new file recompiled in the SDK (with new PicoBlaze6 firmware headers) from the SDK project:

c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_SDK_Workspace\edkdsp_fp12_1x8_s
Use the BOOT.bin generation utility (In the SDK workspace: Xilinx Tools -> Create Boot Image) and create the
new BOOT.bin file (See Figure 29):

c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release\te01
_s\Release\uboot\BOOT.bin

Copy this new **BOOT.bin** file it to:

c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release\te01
_s\Release\sd_card\BOOT.bin

The content of the standalone-release-target SD card is updated with new MicroBlaze and PicoBlaze6 firmware.

52/75

http://zs.utia.cas.cz

Updating of the release SD card images for new Linux-release-target

The Linux-release-target SD card image can be updated by re-compilation of the (possibly modified) C source code for the MicroBlaze in the SDK project. See *Figure 30*.

Create Boot Image	ATTACAM AND ADDRESS	mar CAL	- 10.00	And the second second	×
Create Boot Image					
Architecture: Zynq	•				
Create new BIF file	Import from existing BIF file	e			
Import BIF file path:	C:\TS74\TE0720_EdkDSP_2if_te	706_ila8k_Rel	ease_INSTALL\	SDSoC_PFM\2if\SD_release\te01_I\Release\uboot\te_I.bif	Browse
Basic Security					
Output BIF file path:	C:\TS74\TE0720_EdkDSP_2if_te	e706_ila8k_Re	lease_INSTALL	\SDSoC_PFM\2if\SD_release\te01_l\Release\uboot\te_l.bif	Browse
UDF data:					Browse
Split	Output format: BIN 🔻				
Output path:	C:\TS74\TE0720_EdkDSP_2if_te	e706_ila8k_Re	lease_INSTALL	\SDSoC_PFM\2if\SD_release\te01_I\Release\uboot\BOOT.bin	Browse
Boot image partitions	5				
File path		Encrypted	Authentic		Add
(bootloader) .\zynq_	fsbl.elf	none	none		Delete
.\zsys_wrapper.bit		none	none		
.\edkdsp_fp12_1x8_l.	elf	none	none		Edit
Up					
?				Preview BIF Changes Create Image Car	ncel

Figure 30: Create BOOT.bin for the t01_l demo.

Use the content of directory:

c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release\te01 _1\Release\uboot\ The new BOOT.bin image can be created from these files:

te_l.bif, zynq_fsbl.elf, zynq_wrapper.bit.elf, u-boot.elf, edkdsp_fp12_1x8_l.elf

Replace:

c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release\te01
_1\Release\uboot\edkdsp_fp12_1x8_1.elf

with a new file recompiled in the SDK project:

c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_SDK_Workspace\edkdsp_fp12_1x8_1

Use the **BOOT.bin** generation utility of the SDK and create the new **BOOT.bin** file:

c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release\te01
_1\Release\uboot\BOOT.bin

Copy this new BOOT.bin file to: c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release\te01 _1\Release\sd_card\BOOT.bin

signal processing

53/75

http://zs.utia.cas.cz

Copy modified f0.c, f1.c f2.c and f3.c to the directory: c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release\ te01_1\Release\sd_card\edkdsp\a\ Copy compiled f0.dec, f1.dec f2.dec and f3.dec to the directory: c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release\ te01_1\Release\sd_card\

The content of the Linux-release-target SD card is updated with new MicroBlaze and PicoBlaze6 firmware and stored in the PC.

54/75

http://zs.utia.cas.cz

Akademie věd České republiky Ústav teorie informace a automatizace AV ČR, v.v.i.

10. Installation of Arrowhead Framework Support

This chapter describes an installation procedure of Arrowhead client on Zynq 7000 device with support for the Xilinx SDSoC 2017.4 HW accelerators. The Zynq device runs Xilinx PetaLinux 2017.4. kernel with Debian 9.8 Stretch distribution (03.25.2019). The client SW acts as a *Producer* of a service or as a *Consumer* requesting the service from an Arrowhead framework. The base hardware platform for the Zynq device is compiled with Xilinx Vivado 2017.4 tool. The entire installation procedure has been tested on Win 7 Pro and Win 10 PC. To run and test Arrowhead clients, it is required to have running Arrowhead-framework G4.0 light-weight installation running on a RaspberryPi 3B board (RPi3).

HW configuration with simple arrowhead client example

The targeted HW works with one RPi3 board (bottom) and two Zynq boards (above). The RPi3 implements the Arrowhead framework. See [2] for the documentation. The Producer Zynq on the top board hosts C++ provider capable to measure the actual temperature of the Xilinx XC77010-1C device. The Consumer Zynq in the middle hosts C++ consumer capable to ask the Arrowhead framework about the temperature provided as service by the Producer Zynq board. Zynq boards host HW accelerators of Matrix MultiplyAdd (20x20 int32 matrices), delivering approximately 4x shorter execution time in comparison to the optimized SW running on the 650 MHz Arm Cortex A9 processor.

Figure 31: Zynq module (TE0720-14S on TE0706-02 carrier) with Debian an AH 4.0 Client

Installation of arrowhead framework services on RPi3

Testing and running of the Arrowhead C++ clients on Zynq board requires Ethernet access to the Arrowhead framework services. It is recommended to use the precompiled image for the RPi3 board. It includes already installed and configured Arrowhead framework G4.0 lightweight implementation. The image is available as one of results of the work package WP1 of the running ECSEL JU project Productive4.0 <u>https://productive40.eu/</u>.

It is accessible for all consortium project partners from the project ownCloud repository <u>https://productive4-cloud.automotive.oth-aw.de/index.php/login</u>. Files are present in section WP1, task 1.4. Please contact coordinator of the consortium for further information about the access to the Arrowhead-framework G4.0 light-weight installation running on the RPi3 board. After receiving the access to the download, unzip the three downloaded files *Arrowhead-40-raspi.z01*, *Arrowhead-40-raspi.z02* and *Arrowhead-40-raspi.zip* into the final image file *image_180626.img* (size 3.711.959.040 Bytes).

Copy the RPi3 image *image_180626.img* to (at least) 4GB SD card (speed grade 10). You can use the *Win32DiskImager* utility from: <u>https://sourceforge.net/projects/win32diskimager/</u>.

Connect the RPi3 to USB keyboard, HDMI monitor with inserted SD card. Connect it to Ethernet with the DHCP server. Power ON the board by connecting the 5V power supply via micro USB cable. Power can be provided from the PC via the USB port or, preferably, from the dedicated 5V power supply.

Figure 32: The RaspberryPi 3 will boot from the SD card image with text output to the HDMI monitor.

Login as user:

pi Password:

raspberry

Find and write down the assigned Ethernet IP address for IP V4 and IP V6 by typing on the RPi3 keyboard:

ifconfig

To shutdown properly the RPi3 type on the RPi3 keyboard:

sudo halt

The OS will shutdown and all possibly open R/W operations to the SD card are closed. Remove temporarily the SD card and disconnect the 5V power to switch OFF the board. Return the SD card to RPi3 slot.

Install Debian immage on SD card for the Zynq board

- 1. Unzip the preconfigured and precompiled Debian image for the Zynq board from from this evaluation package file: *te0720-debian.zip* to the file *te0720-debian.img* (8GB).
- 2. Use again the *Win32DiskImager* tool for creation of the image *te0720-debian.img* on the SD card. Use 8GB SD with speed grade 10.
- 3. Copy to the patrition visible from Win7 or Win10 (fat32 partition of the immage) card the selected set of files with one of precompiled HW accelerated demos for the SDSoC accelerator and precompiled firmware files and compiler tools for the 8x SIMD EdkDSP accelerator demo as described in the first part of this application note.
- 4. Insert created SD card to the SD slot of the carrier of the Zynq module.
- 5. Connect the Zynq board with your Win7 or Win 10 PC via two micro USB cable.
- 6. Use *putty* or similar terminal client with *speed (baud)* 115200bps, *data bits* 8, *stop bits* 1, *parity none and flow control none.*
- 7. The actual COM port number associated with your connection can be found in the windows *Device manager*.

Install Arrowhead-f support on zynq

At this stage, the Debian OS present on both Zynq board can be upgraded to become compatible with the Arrowhead framework G4.0 client and provider C++ demo applications.

- 1. Start Ethernet connected RPi3 board, Zynq board and the Win7 or Win 10 PC.
- 2. Identify and write down the Ethernet addresses set by the HDCP server. The network has to support access to the external Ethernet to get access to the needed SW repositories.

In Win7 or Win 10 PC use WinSCP or similar tool to copy the arrowhead installation script *install-arrohead-cli-dep.sh* from this evaluation package to the */root* folder of the Zynq board: /root/install-arrohead-cli-dep.sh

- 3. To control the Zynq board, use SSH (preferred) or serial terminal of your Win7 or Win 10 PC. Log in as: user *root* pswd *root*
- 4. To upgrade the Debian installations on the Zynq SD card image and to install the dependencies required by the Arrowhead framework compatible C++ clients, execute on the Zynq board these commands:

57/75

```
cd /root
chmod ugo+x install-arrohead-cli-dep.sh
./install-arrohead-cli-dep.sh
```

Install arrowhead-f C++ provider on Zynq

To control the Zynq device, use SSH (preferred) or serial terminal.

http://zs.utia.cas.cz

1. Get the Arrowhead client source code. The sources include C++ version of the Arrowhead *Provider* and *Client* skeletons.

cd /root

git clone <u>https://github.com/arrowhead-f/client-cpp</u>

- 2. Compile Arrowhead ProviderExample. cd client-cpp/ProviderExample make
- 3. Modify the *ProviderExample* configuration file *ApplicationServiceInterface.ini* mcedit ApplicationServiceInterface.ini

The configuration file consists of the following items.

- sr_base_uri an address of the Arrowhead registration service running in insecure mode, in our case it is the RPi3 IP address with port 8440.
- sr_base_uri_https an address of the Arrowhead registration service running in secure mode, in our case it is the RPi3 IP address with port 8441.
- port a port number where the *Provider* will be available on, set 8000.
- address Provider IP address, Zynq IP.
- Address6 Provider IP address in IPV6

The *ProviderExample* configuration file example:

```
[Server]
sr_base_uri="http://10.42.0.141:8440/serviceregistry/"
sr_base_uri_https="https://10.42.0.141:8441/serviceregistry/"
port="8000"
address="10.42.0.103"
address6="[fe80::483b:e5ff:fe7f:610d]"
Safe the file (F2) and exit the editor (F10).
```

4. Start the ProviderExample

```
./ProviderExample
```

The *ProvidedExample* registers itself in the Arrowhead framework database. On *Consumer* request, it returns an artificial temperature, fixed to value 26 degrees Celsius.

Install arrowhead-f C++ consumer on Zynq

The Arrowhead ConsumerExample can be compiled and run on the same Zynq board.

1. Compile Arrowhead ConsumerExample.

cd /root/client-cpp/ConsumerExample
make

- 2. Configure the ConsumerExample. There are two configuration files: OrchestratorInterface.ini and consumedServices.json.
 - a. OrchestratorInterface.ini

mcedit OrchestratorInterface.ini

The configuration file consists of the following items.

- or_base_uri an address of the Arrowhead orchestrator service running in insecure mode, in our case it is the RPi3 IP address with port 8440.
- sr_base_uri_https an address of the Arrowhead orchestrator service running in secure mode, in our case it is the RPi3 IP address with port 8441.
- port a port number where the *Consumer* will be available on, set 8002.
- address Consumer IP address, Zynq IP.
- address6 Consumer IP address in IPV6

ПА

http://zs.utia.cas.cz

Akademie věd České republiky Ústav teorie informace a automatizace AV ČR, v.v.i. The configuration file example:

```
[Server]
or_base_uri="http://10.42.0.141:8440/orchestrator/orchestration"
or_base_uri_https="https://10.42.0.141:8441/orchestrator/orchestration"
port="8002"
address="10.42.0.103"
address6="[fe80::483b:e5ff:fe7f:610d]"
```

Safe the file (F2) and exit the editor (F10).

b. consumedServices.json

mcedit consumedServices.json

Modify the following items in the file:

- requestForm/requesterSystem/port Number of the Consumer port.
- Modify line

"security" : ""

- preferredProviders/providerSystem/address Preferred Provider IP address.
- preferredProviders/providerSystem/port Port number, where the preferred *Provider* listen on.

This configuration file should look like this:

```
{
                  "consumerID": "TestconsumerID",
                  "requestForm": {
                    "requesterSystem": {
                      "systemName": "client1",
                      "address": "dontcare",
                      "port": 8002,
                      "authenticationInfo": "null"
                   },
                    "requestedService": {
                      "serviceDefinition": "IndoorTemperature ProviderExample",
                      "interfaces": ["REST-JSON-SENML"],
                      "serviceMetadata":{
                        "security" : ""
                      }
                   },
                    "orchestrationFlags": {
                      "overrideStore" : true,
                      "matchmaking" : true,
                      "metadataSearch" : false,
                      "pingProviders" : false,
                      "onlyPreferred" : true,
                      "externalServiceRequest" : false
                    },
                    "preferredProviders": [{
                      "providerSystem":{
                        "systemName": "SecureTemperatureSensor",
                        "address": "10.42.0.103",
                        "port":"8000"
                      }
                   }]
signal proces_...
                                                                              http://zs.utia.cas.cz
                                              59/75
```


}

Save the file (F2) and exit the mcedit editor (F10).

The Debian midnight commander tool can be started from the command line by typing: $_{\rm mc}\,$ -s

Run the ConsumerExample

./ConsumerExample

The program should show the following response from the *ProviderExample*:

```
Provider Response:
{"e":[{"n": "this_is_the_sensor_id","v":26.0,"t": "1553675692"}],"bn":
"this_is_the_sensor_id","bu": "Celsius"}
```

The *ConsumerExample* will fail in the first instance. The database of the Arrowhead-f running on the RPi3 has to be configured. The *ProviderExample* and the *ConsumerExample* have to be connected by the operator of the database. This is described next.

Modification of arrowhead database

The Arrowhead framework running on RPi3 provides *phpMyAdmin* interface to control its database. To allow the *ConsumerExample* to get the *ProducerExample* service response, follow these steps:

Figure 33: phpMyAdmin interface of the Arrowhead Database

- On your Win7 or Win 10 PC, start web browser and go to the RPi3 *phpMyAdmin* web page, http://10.42.0.141/phpmyadmin (use the IP address of your RPi3).
 User name: root password: root
- Get an ID of the ProducerExample.
 Select table arrowhead_test_cloud_1→arrowhead_system

60/75

and locate the line containing the IP address of the Zynq with system_name *SecureTemperatureSensor*. In our case the ID is 5.

- Get an ID of the ConsumerExample.
 Select table arrowhead_test_cloud_1→ arrowhead_system Locate the line containing system_name: client1.
 In our case it is 7.
- Get an ID of the ProducerExample service. Select table arrowhead_test_cloud_1→ arrowhead_service Locate the line containing service_definition called: IndoorTemperature_ProviderExample. In our case the ID is 55.
- In table service_registry, check if the ProviderExample is linked with its service. Link the ProviderExample, its service and the ConsumerExample together. In table intra_cloud_authorization, add a new line containing: consumer_system_id 7, provider_system_id 5 and arrowhead_service_id 55.

The ConsumerExample should get the proper response from the ProviderExample, now.

🝌 10.42.0.141 / localhost / a 🗙	+	• • ×				
\leftarrow \rightarrow C $③$ Nezabezpečeno	o 10.42.0.141/phpmyadmin/sql.php?server=1&db=arrowhead_test_cloud_1&table=intra 🛠 🛛 🐵	Θ :				
🗰 Aplikace ★ Bookmarks 📲	🛛 programovani 🖿 jidlo 🕮 UTIA 🏾 HC 🚺 Sports Tracker 🛛 🔹 🔪 🖿 Ostat	ní záložky				
php MyAdmin	Server: localhost:3306 » Database: arrowhead_test_cloud_1 » Table: intra_cloud_authorization	☆ ⊼ ^				
🟦 🗐 💿 🗊 🌼 ፍ	🔲 Browse 🥖 Structure 🗐 SQL 🔍 Search 👫 Insert 🚍 Export 📑 Import 🔻	More				
Recent Favorites	Showing rows 0 - 5 (6 total, Query took 0.0005 seconds.)					
New	<pre>SELECT * FROM `intra_cloud_authorization`</pre>					
+ arrowhead	Profiling [Edit inline] [Edit] [Explain SQL] [Create PHP code] [Refresh]					
arrowhead_test_cloud_1	□ Show all Number of rows: 25 ▼ Filter rows: Search this table Sort by key: N	Jone				
+ 1 arrowhead_cloud						
arrowhead_service	+ Options	e id				
+ arrowhead_service_interfac	Copy ⊖ Delete 1 4 1	1				
⊕_} broker	Copy 😔 Delete 2 4 3	1				
event_filter	Copy 😔 Delete 3 4 3	2				
event_filter_sources_list	🖸 🥜 Edit 👫 Copy 🥥 Delete 4 7 5	4				
+ hibernate_sequence	📄 🥜 Edit 👫 Copy 🥥 Delete 6 7 5	55				
• inter_cloud_authorization	🖸 🥜 Edit 👫 Copy 🥥 Delete 5 7 6	4				

Figure 34: The intra_cloud_authorization table of the Arrowhead Database

Test the Zynq consumer and producer

The ProducerExample server is running on the "Producer" Zynq board, now.

Execute the ConsumerExample client example on the "Consumer" Zynq board.

61/75

http://zs.utia.cas.cz

The *ConsumerExample* client example program should show the modelled constant temperature response (26.0) from the *ProviderExample* and exit.

Provider Response:
{"e":[{"n": "this_is_the_sensor_id", "v":26.0, "t": "1553675692"}], "bn":
"this is the sensor id", "bu": "Celsius"}

This concludes the complete demo of Producer and Consumer on two Zynq boards omplemented as C++ SW code compatible with the Arrowhead framework G4.0 lite-installation on the RPi3 board.

Producer service and Consumer client can run on a single Zynqbeery board or two different Zynq boards. The configuration files and the configuration of the Arrowhead framework database described in Chapter 6 - Chapter 10 provides setup for single Zynq board.

Change of the setup for two Zynq boards involves only modification of the corresponding Ethernet addresses assigned by the DHCP server.

The HW accelerated matrix multiplication demo can be executed on both Zynq boards by executing: /boot/te06_l.elf

See the HW acceleration measured by the number of Arm A9 clock cycles.

Producer with real temperature measurement on zyng

Real temperature of the Xilinx chip of the Zynq board can be measured by modified *ProviderExample.cpp* code. This code measures the real temperature of the chip:

#pragma warning(disable:4996)

#include "SensorHandler.h"
#include <sstream>
#include <string>
#include <stdio.h>
#include <thread>
#include <list>
#include <time.h>
#include <iomanip>

#ifdef __linux__ #include <unistd.h> #elif _WIN32 #include <windows.h> #endif

#define TEMP_RAW_FILE "/sys/bus/iio/devices/iio:device0/in_temp0_ps_temp_raw"
#define TEMP_OFFSET_FILE "/sys/bus/iio/devices/iio:device0/in_temp0_ps_temp_offset"
#define TEMP_SCALE_FILE "/sys/bus/iio/devices/iio:device0/in_temp0_ps_temp_scale"

const std::string version = "4.1";

bool bSecureProviderInterface = false; //Enables HTTPS interface on the application service (with token enabled) bool bSecureArrowheadInterface = false; //Enables HTTPS interface towards ServiceRegistry AH module

inline void parseArguments(int argc, char* argv[]){

for(int i=1; i<argc; ++i){</pre>

```
if(strstr("--secureArrowheadInterface", argv[i]))
```

bSecureArrowheadInterface = true;

signal processing

http://zs.utia.cas.cz


```
else if(strstr("--secureProviderInterface", argv[i]))
            bSecureProviderInterface = true;
    }
}
```

```
int main(int argc, char* argv[]){
```

parseArguments(argc, argv);

SensorHandler oSensorHandler;

//SenML format

//todo:

//generate own measured value into "measuredValue"
//"value" should be periodically updated
//"sLinuxEpoch" should be periodically updated

std::string measuredValue; //JSON - SENML format time_t linuxEpochTime = std::time(0); std::string sLinuxEpoch = std::to_string((uint64_t)linuxEpochTime);

```
FILE *f_t_raw, *f_t_off, *f_t_scale;
```

```
if ( (f_t_raw = fopen(TEMP_RAW_FILE, "r")) == NULL ) {
    printf("Cannot open file %s \n", TEMP_RAW_FILE);
    return -1;
```

```
}
```

```
if ( (f_t_off = fopen(TEMP_OFFSET_FILE, "r")) == NULL ) {
    printf("Cannot open file %s \n", TEMP_OFFSET_FILE);
    return -1;
```

```
}
```

if ((f_t_scale = fopen(TEMP_SCALE_FILE, "r")) == NULL) {
 printf("Cannot open file %s \n", TEMP_SCALE_FILE);
 return -1;
}
printf("OK\n");

int t_raw; int t_off; float t_scale;

fscanf(f_t_raw, "%d", &t_raw);
fscanf(f_t_off, "%d", &t_off);
fscanf(f_t_scale, "%f", &t_scale);

signal processing

```
http://zs.utia.cas.cz
```


63/75

```
printf("Cannot close file %s \n", TEMP_RAW_FILE);
        return -1;
     }
     printf("OK\n");
     if ( fclose(f_t_off) == EOF ) {
        printf("Cannot close file %s \n", TEMP_OFFSET_FILE);
        return -1;
     }
     if ( fclose(f_t_scale) == EOF ) {
        printf("Cannot close file %s \n", TEMP_SCALE_FILE);
        return -1;
     }
   //
        double value = 26.0;
     // (raw + offset) * scale ... in milidegree Celsius
     float value = ((float)(t_raw + t_off) * t_scale) / 1000.00f;
   //convert double to string
      std::ostringstream streamObj;
      streamObj << std::fixed;</pre>
      streamObj << std::setprecision(1);</pre>
      streamObj << value;</pre>
      std::string sValue = streamObj.str();
      measuredValue =
         "{"
            "\"e\":[{"
              "\"n\": \"this_is_the_sensor_id\","
              "\"v\":" + sValue +","
              "\"t\": \"" + sLinuxEpoch + "\""
              "}],"
            "\"bn\": \"this_is_the_sensor_id\","
            "\"bu\": \"Celsius\""
         "}";
   //do not modify below this
     oSensorHandler.processProvider(measuredValue, bSecureProviderInterface, bSecureArrowheadInterface);
     while (true) {
       linuxEpochTime = std::time(0);
        sLinuxEpoch = std::to_string((uint64_t)linuxEpochTime);
   //
          if (value < 30.0) value += 0.1;
                      value = 26.0;
// else
               OCESSING
                                                                                                                    http://zs.utia.cas.cz
                                                                    64/75
                                                                                                                 © 2018 ÚTIA AV ČR, v.v.i.
             Akademie věd České republiky
 υπа
             Ústav teorie informace a automatizace AV ČR, v.v.i.
                                                                                        All disclosure and/or reproduction rights reserved
```

if (fclose(f_t_raw) == EOF) {

```
if ( (f_t_raw = fopen(TEMP_RAW_FILE, "r")) == NULL ) {
    printf("Cannot open file %s \n", TEMP_RAW_FILE);
    return -1;
  }
  fscanf(f_t_raw, "%d", &t_raw);
  if ( fclose(f_t_raw) == EOF ) {
    printf("Cannot close file %s \n", TEMP_RAW_FILE);
    return -1;
  }
  value = ((float)(t_raw + t_off) * t_scale) / 1000.00f;
  printf("Zynq Temp : %f °C\n", value);
  streamObj.clear();
  streamObj.str("");
  streamObj << std::fixed;</pre>
  streamObj << std::setprecision(1);</pre>
  streamObj << value;</pre>
  sValue = streamObj.str();
  measuredValue =
     "{"
        "\"e\":[{"
           "\"n\": \"this_is_the_sensor_id\","
           "\"v\":" + sValue +","
           "\"t\": \"" + sLinuxEpoch + "\""
           "}],"
        "\"bn\": \"this_is_the_sensor_id\","
        "\"bu\": \"Celsius\""
     "}";
  oSensorHandler.processProvider(measuredValue, bSecureProviderInterface, bSecureArrowheadInterface);
  #ifdef linux
    sleep(1);
  #elif WIN32
    Sleep(1000);
  #endif
       }
printf("Close file %s ... ", TEMP_RAW_FILE);
if ( fclose(f t raw) == EOF ) {
  printf("FAILED\n");
  return -1;
}
printf("OK\n");
       return 0;
```

Figure 35: Modifications of ProviderExample.cpp C to measure temperature of the Zynq chip

All other files of the ProviderExample project remain identical.

😼 Ubuntu 6	54-bit - VMware Workstation 14 Player			_	
<u>P</u> layer ▼		» 🚚 💿	ta 🖶 🌒		Q 📁 🔚
PUTTY S	SH Client			tµ ⊲×	2:38 PM 🔱
	<pre>Mode in the image is a constraint of the image. The image is a constraint of the image is a constraint of the image is a constraint of the image. The image is a constraint of the image is a constraint of the image is a constraint of the image. The image is a constraint of the image is a constraint of the image is a constraint of the image. The image is a constraint of the image is a constraint of the image is a constraint of the image. The image is a constraint of the image is a constraint of the image is a constraint of the image. The image is a constraint of the image is a constraint of the image is a constraint of the image. The image is a constraint of the image is a constraint of the image is a constraint of the image. The image is a constraint of the image. The image is a constraint of the image is a const</pre>	s_is_the_senso	or_id","bu": "	Celsius"}	
	Lastvalue updated.				
>_	😕 😑 💷 mc [root@zynq]:~/client-cpp/ConsumerExample				
	root@zynq:"/client-cpp/ConsumerExample# ./ConsumerExample				
	Consumer example v4.0				
					Store .
ل ال	ConsumedServiceTable				
	<pre>TestconsumerID : { "requesterSystem": { "systemName": "ClientI", "address": " }, "requestedService": { "serviceDefinition": "IndoorTemperature_Provider eMetadata": { "security": "" } }, "orchestrationFlags": { "overrideStore": ingProviders": false, "onlyPreferred": true, "externalServiceRequest": fals stemName": "SecureTemperatureSensor", "address": "192.168.13.160", "port":</pre>	"dontcare", Example", "int true, "matchma e }, "preferre "8000" } }] }	port": 8002, cerfaces": [" aking": true, edProviders":	"authenticatic REST-JSON-SENM "metadataSearc [{ "providerS	nfinfo": "null fL"], "servic ch": false, "p System": { "sy
	ы́з У				
	OrchestratorInterface started - 192,168,13,160:8002 ConsumerID: TestoonsumerID				
: 🛃	Sending Orchestration Request: (Insecure Arrowhead Interface) Orchestration response: {				
	"response" : [{ "service" : { "'di" + 0				
	"serviceDefinition" : "IndoorTemperature_ProviderExample", "interfaces" : ["REST-JSON-SENML"], "serviceMetadata" : {				19 A.
	"unit" : "Lelsius" } }.				
	"provider" : { "id" : 5,				
	"systemName" : "SecureTemperatureSensor", "address" : "192.168.13.160", "sort" : 9000				
	<pre>}, "serviceURI" : "this_is_the_custom_url",</pre>				
	"warnings" : [] _ }]				
	s sendHttpRequestToProvider				
	Provider Response: {"e":[{"n": "this_is_the_sensor_id","v":61.9,"t": "1557232692"}],"bn": "thi	s_is_the_senso	or_id","bu": "	Celsius"}	24
	Done. notRzupa*″/client-cop/ConsumerFyamole# ■				
					. And the second second

Figure 36: ProviderExample and ConsumerExample clients on Zynq.

Recompile the *ProviderExample* project by *make*. Test it on the Zynq board.

Modified ProviderExample is registered to the Arrowhead database. For debug purposes it also prints the actual temperature of the chip to its console. See *Figure 36.* Modified ConsumerExample connects via the Arrowhead framework. It receives and displayes the actual chip temperature.

In

Figure 36, two instances of the Ubuntu PuTTY SSH Client are used. Both clients are connected to the Zynq module to test the Arrowhead framework.

Conclusions

Support for the Arrowhead framework (installed as G4.0 lite on the RPi3 board) has been demonstrated. See *Figure 36*.

The Zynq device remains compatible with the SDSoC 2017.4 system level compiler of HW accelerators.

It also remains compatible with the 8xSIMD EdkDSP single precision floating point HW accelerator running in the programmable part of the Zynq device. The firmware for the run-time reconfigurable 8xSIMD EdkDSP IP can be compiled from source code C by compiler application running on the same Zynq device. Compiled firmware code can be downloaded by Debian user-space C-coded applications during the run-time without the need to reset or reboot the Zynq board. This application note also describes the clock-cycle-accurate debug support for the EdkDSP accelerator based on the Xilinx ChipScope logic analyser instantiated in the programmable logic of the Zynq device.

The documented Arrowhead compatible Zynq Clients bring to the framework the additional support for the acceleration of part of local computation in the programmable logic HW based on the SDSoC compiler.

67/75

ŪΠĂ

http://zs.utia.cas.cz

11. Data Lines on TE0703-05 and TE0706-02 Carrier Boards

Figure 37: Connection of PCBs data lines to connectors on TE0703-05 carrier board

68/75

http://zs.utia.cas.cz

Figure 38: Connection of PCBs data lines to connectors on TE0706-02 carrier board

Figure 37 describes connection of PCBs data lines to the connectors on the TE0703-05 carrier board and *Figure 38* for the TE0703-05 carrier board. Table 13 describes the common connections of Zynq pins to TE0703-05 and TE0706-02 PCB data lines. Users of the development package can use these data for creation of own user constrains and extend the Vivado 2017.4.1 HW projects generated by the SDSoC 2017.4.1 design environment.

Zynq	Board 3.3V	Zynq	Board 3.3V	Zynq	Board 3.3V	Zynq	Board 1.8V
C22	B35_L16_N	AA22	B33_L7_P	AA12	B13_L7_P	J18	B34_L7_P
D22	B35_L16_P	AB22	B33_L7_N	AB12	B13_L7_N	K18	B34_L7_N
G22	B35_L24_N	AA21	B33_L8_P	AA11	B13_L8_P	J16	B34_L2_P
H22	B35_L24_P	AB21	B33_L8_N	AB11	B13_L8_N	J17	B34_L2_N
B22	B35_L18_N	Y19	B33_L11_P	AA9	B13_L11_P	L17	B34_L4_P
B21	B35 L18 P	AA19	B33 L11 N	AA8	B13 L11 N	M17	B34 L4 N
A22	B35 L15 N	Y18	B33 L12 P	AB10	B13 L9 P	N17	B34 L5 P
A21	B35_L15_P	AA18	B33_L12_N	AB9	B13_L9_N	N18	B34_L5_N
G21	B35 L22 N	V15	B33 VREF	T4	B13 L20 P	L18	B34 L12 P
G20	B35_L22_P	AA17	B33_L17_P	U4	B13_L20_N	L19	B34_L12_N
D21	B35_L17_N	AB17	B33_L17_N	AB7	B13_L17_P	J21	B34_L8_P
E21	B35_L17_P	AA16	B33_L18_P	AB6	B13_L17_N	J22	B34_L8_N
B20	B35_L13_N	AB16	B33_L18_N	AB5	B13_L16_P	J20	B34_L9_P
B19	B35_L13_P	W20	B33_L4_P	AB4	B13_L16_N	K21	B34_L9_N
C20	B35_L14_N	W21	B33_L4_N	Y4	B13_L18_P	R19	B34_L22_P
D20	B35_L14_P	W17	B33_L13_P	AA4	B13_L18_N	T19	B34_L22_N
G16	B35_L4_N	W18	B33_L13_N	AB2	B13_L15_P	J15	B34_L1_P
G15	B35_L4_P	W16	B33_L14_P	AB1	B13_L15_N	K15	B34_L1_N
C19	B35_L12_N	Y16	B33_L14_N	V5	B13_L21_P	P20	B34_L18_P
D18	B35_L12_P			V4	B13_L21_N	P21	B34_L18_N
F19	B35_L20_N			U7	B13_I025	P17	B34_L20_P
G19	B35_L20_P			U12	B13_L5_P	P18	B34_L20_N
A19	B35_L10_N			U11	B13_L5_N	L21	B34_L10_P
A18	B35_L10_P			U10	B13_L6_P	L22	B34_L10_N
A17	B35_L9_N			U9	B13_L6_N	M19	B34_L13_P
A16	B35_L9_P			V10	B13_L1_P	M20	B34_L13_N
B15	B35_L7_N			V9	B13_L1_N	T16	B34_L21_P
C15	B35_L7_P			Y9	B13_L12_P	T17	B34_L21_N
D17	B35_L2_N			Y8	B13_L12_N	M21	B34_L15_P
D16	B35_L2_P			AA7	B13_L14_P	M22	B34_L15_N
B17	B35_L8_N			AA6	B13_L14_N	R20	B34_L17_P
B16	B35_L8_P			Y6	B13_L13_P	R21	B34_L17_N
E20	B35_L21_N			Y5	B13_L13_N	R18	B34_L23_P
E19	B35_L21_P			V12	B13_L4_P	T18	B34_L23_N
C18	B35_L11_N			W12	B13_L4_N	M16	B34_VREF
C17	B35_L11_P			W11	B13_L3_P	N19	B34_L14_P
F22	B35_L23_N			W10	B13_L3_N	N20	B34_L14_N
F21	B35_L23_P			Y11	B13_L10_P		
E18	B35_L5_N			Y10	B13_L10_N		
F18	B35_L5_P			V8	B13_L2_P		
D15	B35_L3_N			W8	B13_L2_N		
E15	B35_L3_P			V7	B13_L23_P		
F17	B35_L6_N			W7	B13_L23_N		
G17	B35_L6_P			W6	B13_L24_P		
E16	B35_L1_N			W5	B13_L24_N		
F16	B35_L1_P			R6	B13_L19_P		
H20	B35_L19_N			T6	B13_L19_N		
H19	B35_L19_P			U6	B13_L22_P		
				U5	B13_L22_N		
				R7	B13 IO0		

70/75

Table 13: Common Connections of Zynq pins to TE0703-05 and TE0706-02 PCB Data Lines

signal processing

http://zs.utia.cas.cz

12. References

[1] **TE0720-03-2IF**; Part: XC7Z020-2CLG484I; 1 GByte DDR; Industrial Grade (Tj = -40°C to +100°C) <u>http://shop.trenz-electronic.de/en/TE0720-03-2IF-Xilinx-Zynq-module-XC7Z020-2CLG484I-ind.-temp.-range-1-Gbyte</u> <u>https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/TE0720/REV03/Documents/TRM-TE0720-03.pdf</u> <u>https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/Modules_and_Module_Carriers/4x5/TE0720/REV03/</u> <u>Documents/SCH-TE0720-03-2IF.PDF</u>

TE0720-03-1QF; Part: XA7Z020-1CLG484Q; 1 GByte DDR; Automotive Grade (Tj = -40°C to +125°C) <u>https://shop.trenz-electronic.de/en/TE0720-03-1QF-Xilinx-Zynq-module-ind.-temp.-range-with-Automotive-XA7Z020-1CLG484Q</u> <u>https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/Modules_and_Module_Carriers/4x5/TE0720/REV03/</u> <u>Documents/SCH-TE0720-03-1QF.PDF</u>

TE0720-03-214S-1C; Part: XC7Z014S-1CLG484C; 1 GByte DDR; Industrial Grade (Tj = 0°C to +85°C) <u>https://shop.trenz-electronic.de/en/TE0720-03-14S-1C-SoC-Module-with-Xilinx-Zynq-Z-7014S-Single-core-1-GByte-DDR3</u> <u>https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/Modules_and_Module_Carriers/4x5/TE0720/REV03/</u> <u>Documents/SCH-TE0720-03-14S-1C-PDF</u>

[2] Heatsink for TE0720, spring-loaded embedded;

https://shop.trenz-electronic.de/en/26922-Heatsink-for-TE0720-spring-loaded-embedded?c=38

[3] TE0706-02 Carrierboard for Trenz Electronic Modules with 4 x 5 cm Form factor

https://shop.trenz-electronic.de/en/TE0706-02-TE0706-Carrierboard-for-Trenz-Electronic-Modules-with-4-x-5-cm-Form-factor?c=261 https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/carrier_boards/TE0706/REV02/documents/SCH-TE0706-02.PDF https://wiki.trenz-electronic.de/display/PD/TE0706+TRM

TE0703-05 Carrier board for Trenz Electronic Modules with 4 x 5 cm Form factor

https://shop.trenz-electronic.de/en/TE0703-05-TE0703-Carrier-board-for-Trenz-Electronic-modules-with-4-x-5-cm-form-factor?c=261 https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/Modules_and_Module_Carriers/4x5/4x5_Carriers/ TE0703/REV05/Documents/SCH-TE0703-05.PDF https://wiki.trenz-electronic.de/display/PD/TE0703+TRM

[4] **Pmod USBUART**: Serial converter & interface.

https://shop.trenz-electronic.de/en/24242-Pmod-USBUART-USB-to-UART-Interface?c=80

[5] XMOD FTDI JTAG Adapter - Xilinx compatible

https://shop.trenz-electronic.de/en/TE0790-02-XMOD-FTDI-JTAG-Adapter-Xilinx-compatible

[6] Vivado HLx Web Install Client - 2017.4.1. <u>https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2015-4.html</u>

[7] SDSoC - 2017.4.1 Full Product Installations.

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/sdx-development-environments/sdsoc/2015-4.html

71/75

[8] PRODUCTIVE 4.0 Project www page in UTIA with pointers to evaluation packages for download http://sp.utia.cz/index.php?ids=projects/productive40

http://zs.utia.cas.cz

13. Base Release Evaluation Package

The **base**, release evaluation package can be downloaded from UTIA www pages [8] free of charge.

Deliverables:

The base, release evaluation package [8] includes evaluation bitstreams with single (8xSIMD) EdkDSP IP working in parallel with selected HW-accelerated SDSoC algorithms on the Trenz Electronic TE0720-03-2IF, TE0720-03-1QF and TE0720-03-14S-1C module [1] located on the Trenz Electronic TE0706-02 or TE0703-05 carrier [3] with PMOD USBUART adapter [4] and XMOD FTDI JTAG Adapter [5].

The evaluation package [8] includes bitstreams compiled with the evaluation version of the (8xSIMD) EdkDSP IP core. Bitstreams contain these IPs:

bce_fp12_1x8_0_axiw_v1_10_c	Evaluation version of the AXI-lite interface
bce_fp12_1x8_40	Evaluation version of the floating point data path

The base, release evaluation version of the (8xSIMS) EdkDSP IP is compiled into bitstreams with a HW limit on number of vector operations. The termination of the nonexclusive, non-transferable evaluation license of this evaluation IP core is reported in advance by the demonstrator on the PMOD USBUART terminal. The evaluation designs will run again after the reset (TE0706-02: Reset push button S2; TE0703-05: Reset push button S1).

The base evaluation package [8] includes these binary applications:

edkdsppp.elfEdkDSP C pre-processor binary for ARM PetaLinux running on the evaluation board.edkdspcc.elfEdkDSP C compiler binary for ARM PetaLinux running on the evaluation board.edkdsppsm.elfEdkDSP ASM compiler binary for ARM PetaLinux running on the evaluation board.

These binary applications have no time restriction. The user of the evaluation package has nonexclusive, nontransferable license from UTIA to use these utilities for compilation of the firmware for the Xilinx PicoBlaze6 processor inside of the 8xSIMD EdkDSP IP in precompiled designs. The source code of these compilers is owned by UTIA and it is not provided in the evaluation package.

The base evaluation package [8] includes the Debian image:

te0720-debian.zip Zip archive with te0720-debian.img image for installation on the Zynq SD card.

The base, release evaluation package [8] includes demonstration firmware in C source code for the Xilinx PicoBlaze6 processor for the family of UTIA EdkDSP accelerators for the Trenz Electronic TE0720-03-2IF, TE0720-03-1QF and TE0720-03-14S-1C module [1] on Trenz Electronic TE0706-02 or TE0703-05 carrier board [3].

HW boards are not part of deliverables. HW can be ordered separately from [1] - [5].

Any and all legal disputes that may arise from or in connection with the use, intended use of or license for the software provided hereunder shall be exclusively resolved under the regional jurisdiction relevant for UTIA AV CR, v. v. i. and shall be governed by the law of the Czech Republic. See also the Disclaimer section.

72/75

http://zs.utia.cas.cz

14. Extended Debug Evaluation Package for PRODUCTIVE 4.0 partners

The extended, debug evaluation package includes MicroBlaze and PicoBlaze6 C code and precompiled bitstreams of HW projects for the Trenz Electronic TE0720-03-2IF, TE0720-03-1QF and TE0720-03-14S-1C module [1] located on the Trenz Electronic TE0706-02 or TE0703-05 carrier [3] with PMOD USBUART adapter [4] and XMOD FTDI JTAG Adapter [5] with the evaluation version of the (8xSIMD) EdkDSP IP. Partners of the ECSEL PRODUCTIVE 4.0 project [8] can order this extended package from UTIA AV CR, v.v.i., by email request for guotation to kadlec@utia.cas.cz.

UTIA AV CR, v.v.i., will provide to the PRODUCTIVE 4.0 project partner quotation by email. After confirmation of the quotation by the customer, UTIA AV CR, v.v.i., will send to the customer this invoice:

The extended, debug evaluation package with MicroBlaze and PicoBlaze6 C code and precompiled bitstream of HW projects for the Trenz Electronic TE0720-03-2IF, TE0720-03-1QF and TE0720-03-14S-1C module [1] located on the Trenz Electronic TE0706-02 or TE0703-05 carrier [3] with PMOD USBUART adapter [4] and XMOD FTDI JTAG Adapter [5] with the evaluation version of the 8xSIMD EdkDSP IP for the partners in the **ECSEL PRODUCTIVE 4.0 project** (Without VAT)

0,00 Eur

After receiving confirmation from the PRODUCTIVE 4.0 project partner about the zero-invoice received, UTIA AV CR, v.v.i. will send within 5 working days by standard mail printed version of this application note together with DVD with the Deliverables described in this section.

Deliverables:

The extended, debug evaluation package for PRODUCTIVE 4.0 partners [8] includes MicroBlaze and PicoBlaze6 C code and precompiled bitstreams of HW projects. MicroBlaze and PicoBlaze6 SW projects can be modified and recompiled by the PRODUCTIVE 4.0 project partner.

The extended, debug evaluation version of the UTIA 8xSIMD EdkDSP accelerator IP is provided in precompiled bitstreams of HW projects with these IPs:

bce_fp12_1x8_0_axiw_v1_10_c	Evaluation version of the AXI-lite interface
bce_fp12_1x8_40	Evaluation version of the floating point data path

The extended, debug evaluation version of the 8xSIMS EdkDSP IP is compiled into bitstream with an HW limit on number of vector operations. The termination of the nonexclusive, non-transferable evaluation license of this evaluation IP core is reported in advance by the demonstrator on the PMOD USBUART terminal. The evaluation designs will run again after the reset (TE0706-02: Reset push button S2; TE0703-05: Reset push button S1).

The extended, debug evaluation package [8] includes these binary applications:

edkdsppp.elf EdkDSP C pre-processor binary for ARM PetaLinux running on the evaluation board. edkdspcc.elf EdkDSP C compiler binary for ARM PetaLinux running on the evaluation board. edkdsppsm.elf EdkDSP ASM compiler binary for ARM PetaLinux running on the evaluation board. edkdspasm.elf EdkDSP ASM compiler binary for ARM PetaLinux running on the evaluation board.

These binary applications have no time restriction. The user of the evaluation package has nonexclusive, nontransferable license from UTIA to use these utilities for compilation of the firmware for the Xilinx PicoBlaze6

73/75

signal processing

http://zs.utia.cas.cz

© 2018 ÚTIA AV ČR. v.v.i. All disclosure and/or reproduction rights reserved processor inside of the UTIA EdkDSP accelerators in precompiled designs. The source code of these compilers is owned by UTIA and it is not provided in the evaluation package.

The extended, debug evaluation package for PRODUCTIVE 4.0 partners includes the Debian image: **te0720-debian.zip** Zip archive with te0720-debian.img image for installation on the Zynq SD card.

The extended, debug evaluation package for PRODUCTIVE 4.0 partners includes demonstration firmware in C source code for the Xilinx PicoBlaze6 processor for the family of UTIA EdkDSP accelerators for the Trenz Electronic TE0720-03-2IF, TE0720-03-1QF and TE0720-03-14S-1C module [1] on Trenz Electronic TE0706-02 or TE0703-05 carrier board [3].

The extended, debug evaluation package for PRODUCTIVE 4.0 partners includes SDK SW projects with C source code for MicroBlaze. The extended, debug evaluation package [8] includes static library for MicroBlaze processor:

libwal.a SDK 2017.4.1 UTIA static library with EdkDSP API for MicroBlaze

This library has no time restriction. Source code of this library is not provided in this evaluation package.

HW boards are not part of deliverables. HW can be ordered separately from references [1] – [5].

Partners of the ECSEL PRODUCTIVE 4.0 project [8] can order the hardware [1] - [5] directly from the company Trenz Electronic or order the complete evaluation system from UTIA AV CR, v.v.i.

In case of an order from UTIA AV CR, v.v.i., an email request for a quotation to <u>kadlec@utia.cas.cz</u> is required. UTIA AV CR, v.v.i., will provide to the PRODUCTIVE 4.0 project partner quotation by email. After confirmation of the quotation by the PRODUCTIVE 4.0 project partner, UTIA AV CR, v.v.i., will buy from company Trenz Electronic boards [1]-[5] with cables and power supply. UTIA will assemble and test the complete evaluation system and send them to the PRODUCTIVE 4.0 project partner for price identical to the price offered by the company Trenz Electronic plus the transport cost and the VAT.

Any and all legal disputes that may arise from or in connection with the use, intended use of or license for the software provided hereunder shall be exclusively resolved under the regional jurisdiction relevant for UTIA AV CR, v. v. i. and shall be governed by the law of the Czech Republic. See also the Disclaimer section.

74/75

http://zs.utia.cas.cz

Disclaimer

This disclaimer is not a license and does not grant any rights to the materials distributed herewith. Except as otherwise provided in a valid license issued to you by UTIA AV CR v.v.i., and to the maximum extent permitted by applicable law:

THIS APPLICATION NOTE AND RELATED MATERIALS LISTED IN THIS PACKAGE CONTENT ARE MADE (1) AVAILABLE "AS IS" AND WITH ALL FAULTS, AND UTIA AV CR V.V.I. HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and

(2) UTIA AV CR v.v.i. shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under or in connection with these materials, including for any direct, or any indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or UTIA AV CR v.v.i. had been advised of the possibility of the same.

Critical Applications:

UTIA AV CR v.v.i. products are not designed or intended to be fail-safe, or for use in any application requiring fail-safe performance, such as life-support or safety devices or systems, Class III medical devices, nuclear facilities, applications related to the deployment of airbags, or any other applications that could lead to death, personal injury, or severe property or environmental damage (individually and collectively, "Critical Applications"). Customer assumes the sole risk and liability of any use of UTIA AV CR v.v.i. products in Critical Applications, subject only to applicable laws and regulations governing limitations on product liability.

75/75

http://zs.utia.cas.cz

© 2018 ÚTIA AV ČR. v.v.i. All disclosure and/or reproduction rights reserved