

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved.

Application Note

 http://zs.utia.cas.cz

Arrowhead Compatible Zynq with SDSoC 2017.4
and Floating-Point 8xSIMD EdkDSP Accelerators

Supported Trenz Electronic Modules:

TE0720-03-2IF, TE0720-03-1QF, TE0720-03-14S-1C, TE0720-03-1CFA
Supported Trenz Electronic Carrier Boards: TE0703-05, TE0706-02

Jiří Kadlec, Zdeněk Pohl, Lukáš Kohout

kadlec@utia.cas.cz , xpohl@utia.cas.cz , kohoutl@utia.cas.cz
phone: +420 2 6605 2216

UTIA AV CR, v.v.i.
Revision history:

Rev. Date Author Description

1 12.01.2018 Jiří Kadlec Initial internal draft for the Productive 4.0 consortium
meeting 17-18.1.2018 (Lisabon, PT).
For Vivado and SDK ver. 2017.1

2 30.01.2018 Jiří Kadlec Demonstrator description prior to the Productive 4.0
project conference in Athens 6-7.3.2018
For Vivado and SDK ver. 2017.1.

3 15.05.2018 Jiří Kadlec Revision for Vivado and SDK ver. 2017.4.1
Supported Trenz Electronic Zynq modules:
TE0720-03-2IF, TE0720-03-1QF, TE0720-03-14S-1C
Supported Trenz Electronic Carrier Boards:
TE0703-05, TE0706-02

4 18.05.2018 Jiří Kadlec Added board line description and licensing conditions for
the development package.

5 24.05.2018 Jiří Kadlec Added support for TE0720-03-1CFA-S starter kit

6 05.04.2019 Jiri Kadlec Support for Debian and Arrowhead framework G4.0 on
RaspberryPi 3B (lite installation) C++ Clients: Producer
and Consumer running on Zynq TE0720 devices.

7 09.05.2019 Jiri Kadlec V2: Updated Fig. 36. Evaluation package includes Image
of SD card with Debian for TE0720-03-2IF with SDSoC
te06_l application, Arrowhead Producer and Consumer.

Acknowledgements:
This work has been partially supported by ECSEL JU project Productive4.0 No. 737459.

mailto:kadlec@utia.cas.cz
mailto:xpohl@utia.cas.cz

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

2/75

http://zs.utia.cas.cz

Table of Contents

Arrowhead Compatible Zynq with SDSoC 2017.4 and Floating-Point 8xSIMD EdkDSP Accelerators Supported Trenz
Electronic Modules: TE0720-03-2IF, TE0720-03-1QF, TE0720-03-14S-1C, TE0720-03-1CFA Supported Trenz Electronic
Carrier Boards: TE0703-05, TE0706-02 .. 1

1. EdkDSP IP Core - Introduction ... 5

2. Implementation Details .. 6

3. EdkDSP IP Core – PicoBlaze6 C Application Interface Functions ...12

4. EdkDSP IP Core – MicroBlaze C Application Interface Functions ...13

5. EdkDSP IP Core – Integration with dual core ARM A9 Linux ...18

6. Setup of Hardware ...19

7. Reference Application for the 8xSIMD EdkDSP IP Core...23

8. Installation and Use of Base Evaluation Package ..25

9. Installation and Use of Debug Evaluation Package ...40

10. Installation of Arrowhead Framework Support ..55

HW configuration with simple arrowhead client example .. 55

Installation of arrowhead framework services on RPi3 .. 56

Install Debian immage on SD card for the Zynq board ... 57

Install Arrowhead-f support on zynq ... 57

Install arrowhead-f C++ provider on Zynq ... 57

Install arrowhead-f C++ consumer on Zynq .. 58

Modification of arrowhead database ... 60

Test the Zynq consumer and producer .. 61

Producer with real temperature measurement on zynq ... 62

Conclusions ... 67

11. Data Lines on TE0703-05 and TE0706-02 Carrier Boards ...68

12. References ...71

13. Base Release Evaluation Package ...72

14. Extended Debug Evaluation Package for PRODUCTIVE 4.0 partners ...73

Disclaimer ..75

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

3/75

http://zs.utia.cas.cz

Table of Figures

Figure 1: TE0703-05 carrier board with TE0720-03-14S-1C Zynq module ... 5
Figure 2: SDSoC compatible Zynq system with 8xSIMD EdkDSP floating point accelerator. 6
Figure 3: 8xSIMD EdkDSP floating point accelerator IP core with System ILA....................................... 9
Figure 4: Internal details of (8xSIMD) EdkDSP floating point accelerator IP core. 10
Figure 5: TE0706-02; TE0720-03-14S-1C; USBUART and XMOD FTDI JTAG adapter 19
Figure 6: TE0706-02 Carrier Board. ... 21
Figure 7: TE0703-05 Carrier Board. ... 22
Figure 8: Release demo t01_s. ARM and 8xSIMD EdkDSP terminal output. 30
Figure 9: Release demo t01_s. Vivado Lab Tool is open. .. 31
Figure 10: Release demo t01_s. Probes file is specified. Trigger conditions are set. 32
Figure 11: Release demo t01_s. Details of the 8xSIMD EdkDSP LMS filter computation. 33
Figure 12: Release demo t01_s. Details of the 8xSIMD EdkDSP FIR filter computation. 34
Figure 13: Release demo t01_s. Standalone demo supports measurements of the chip temperature. 35
Figure 14: Release demo t01_l. Linux start. ... 37
Figure 15: Release demo t01_l; Login, Compilation of firmware in the EdkDSP C Compiler. 38
Figure 16: Release demo t01_l; Program and start 8xSIMD EdkDSP demo. 39
Figure 17: Create new SDK 2017.4.1 workspace. ... 41
Figure 18: Import the extended debug evaluation package projects into the SDK Workspace. 42
Figure 19: SDK compiles MicroBlaze SW projects for the standalone debug target. 43
Figure 20: Debug demo t01_l; Execution of the ./t01_s.elf example from the SD card. 44
Figure 21: Debug demo t01_s; Open project edkdsp_fp12_1x8_s for debug. 44
Figure 22: Debug demo t01_s; Start the free-run from the debugger. .. 45
Figure 23: Debug demo t01_s. Arm started EdkDSP and runs SDSoC akcelerátor demo. 45
Figure 24: Debug demo t01_s; MicroBlaze project output (Compiled for Debug). 46
Figure 25: Compiled EdkDSP firmware. Started debug demo - Linux target t01_l. 48
Figure 26: Select MicroBlaze project edkdsp_fp12_1x8_l for debug. ... 49
Figure 27: Select free run of MicroBlaze project edkdsp_fp12_1x8_l. .. 50
Figure 28: Output from ARM MicroBlaze fort t01_l. Compiled EdkDSP firmware. 51
Figure 29: Create BOOT.bin for the t01_s demo. ... 52
Figure 30: Create BOOT.bin for the t01_l demo. .. 53
Figure 31: Zynq module (TE0720-14S on TE0706-02 carrier) with Debian an AH 4.0 Client 55
Figure 32: The RaspberryPi 3 will boot from the SD card image with text output to the HDMI monitor. 56
Figure 33: phpMyAdmin interface of the Arrowhead Database .. 60
Figure 34: The intra_cloud_authorization table of the Arrowhead Database .. 61
Figure 35: Modifications of ProviderExample.cpp C to measure temperature of the Zynq chip 65
Figure 36: ProviderExample and ConsumerExample clients on Zynq. ... 66
Figure 37: Connection of PCBs data lines to connectors on TE0703-05 carrier board 68
Figure 38: Connection of PCBs data lines to connectors on TE0706-02 carrier board 69

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

4/75

http://zs.utia.cas.cz

 Table of Tables

Table 1: Parameters of supported Zynq modules. ... 6
Table 2: (8xSIMD) EdkDSP bce_fp12_1x8_40 accelerator vector operations. 8
Table 3: PicoBlaze6 ports forming VLIW instruction for the 8xSIMD EdkDSP data flow unit. 11
Table 4: PicoBlaze6 precompiled support functions ... 12
Table 5: MicroBlaze access names to 8xSIMD EdkDSP memory banks .. 13
Table 6: MicroBlaze WAL error codes ... 13
Table 7: MicroBlaze API functions for communication with 8xSIMD EdkDSP IP core 13
Table 8: Organisation of DDR3 memory .. 18
Table 9: Connection of USBUART to TE0706-02 .. 20
Table 10: Connection of USBUART to TE0703-05 .. 20
Table 11: Requirements and results. ... 24
Table 12: Description of ARM SDSoC acceleration examples compatible with 8xSIMD EdkDSP IP 26
Table 13: Common Connections of Zynq pins to TE0703-05 and TE0706-02 PCB Data Lines 70

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

5/75

http://zs.utia.cas.cz

1. EdkDSP IP Core - Introduction

This report describes design of compact HW system based on Zynq all programmable 28nm chip with one or two
Arm A9 processors and programmable logic area. System is optimised for Ethernet connected computing nodes
serving for industrial automation, local data processing and data communication. The documented HW
architecture is one of candidates for wider use within the ECSEL Productive 4.0 project for the edge computing
node in the Industry 4.0 solutions. 2 carrier boards and 3 Zynq modules from Trenz Electronic are supported.

The demonstrated Zynq systems include the run-time reprogrammable 8xSIMD EdkDSP IP core. It combines the
MicroBlaze and the floating point single instruction multiple data (SIMD) data flow unit (DFU). The SIMD DFU is
controlled by a run-time reprogrammable finite state machine implemented by Xilinx PicoBlaze6 8 bit controller
with dedicated embedded (on Zynq executed) C compiler.

The application note describes the installation of the HW system, the SW API, algorithmic implementation and
mapping to the 8xSIMD EdkDSP IP. Presented HW system is also compatible with the Xilinx SDSoC 2017.4.1
design environment. The SDSoC is supporting automated compilation of user-defined C/C++ ARM functions into
HW accelerators with several types of data movers (zero-copy, DMA, SG-DMA) and the automated integration of
generated accelerators as an ARM Linux operating system or standalone application.

Debian image is provided for the Zynq board in format of image for the SD card. Chapter 10 describes simple
installtion of additional SW packages and templates to get compatibility with Arrowhead framework G4.0 Java
services. These services run together with the Arrowhead database on a separate RaspberryPi 3B board and
form example of an Arrowhead local cloud. See Figure 32.

Figure 1: TE0703-05 carrier board with TE0720-03-14S-1C Zynq module

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

6/75

http://zs.utia.cas.cz

2. Implementation Details

Figure 2: SDSoC compatible Zynq system with 8xSIMD EdkDSP floating point accelerator.

Evaluation system parameters
The evaluation system supports two Trenz Electronic carrier boards (TE0703-05 and TE0706-02) [3] and three
types of Trenz Electronic Zynq modules [1]:

 TE0720-03-2IF is an industrial grade (Tj = -40°C to +100°C) module, speed 2 with dual core Arm A9.
The dual core Arm A9 and the PL part are faster in comparison to the other two modules.

 TE0720-03-1QF is an automotive grade (Tj = -40°C to +125°C) module, speed 1 with dual core Arm A9.
This module can be used in applications requiring wide temperature range. Module is more expensive.

 TE0720-03-14S-1C is a commercial grade (Tj = 0°C to +85°C) module, speed 1 with single core Arm Cortex A9
and reduced programmable logic (PL) size. This is low cost module suitable for cost sensitive applications.

 TE0720-03-1CFA-S is a commercial grade (Tj = 0°C to +85°C) module, speed 1 with dual core Arm Cortex A9.
This is assembled starter kit with the TE0720-03-1CFA module, heat sink, TE0703-05 carrier board, USB
cable, SD card and the 5V/4A power supply.

Main parameters of these modules are summarised in Table 1.

Table 1: Parameters of supported Zynq modules.

Module Xilinx Zynq device ARM A9 A9 clock Slices LUTs REGs BRAMs DSPs

TE0720-03-2IF XC7Z020-2CLG484I 2x 766MHz 13300 53200 106400 140 220

TE0720-03-1QF XA7Z020-1CLG484Q 2x 666MHz 13300 53200 106400 140 220

TE0720-03-14S-1C XC7Z014S-1CLG484C 1x 666MHz 13300 40600 81200 107 170

TE0720-03-1CFA XC7Z020-1CLG484C 2x 666MHz 13300 53200 106400 140 220

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

7/75

http://zs.utia.cas.cz

The PL part of the 28nm Zynq device contains:

 The run-time reprogrammable 8xSIMD EdkDSP floating point IP Core. It is using 120 MHz clock in case of the
faster TE0720-03-2IF module and 100 MHz clock in case of the other two modules.

 MicroBlaze 32 bit soft core processor operating at 100 MHz.

 One of HW accelerators generated in Xilinx SDSoC 2017.4.1 from C/C++ reference SW ARM A9 function and
operating with 150 MHz, 120 MHz, 100 MHz or 50 MHz clock.

The EdkDSP IP Core is 8xSIMD floating point accelerator. It is reprogrammable in runtime by change of firmware
of a PicoBlaze6 8bit controller. The PicoBlaze6 controller schedules vector operations performed in the 8xSIMD
floating point data paths. The PicoBlaze6 controller serves as re-programmable finite state machine (FSM). It is
programmed by firmware compiled by an EdkDSP C Compiler and Assembler.

The EdkDSP C Compiler and Assembler are implemented as application programs running on the embedded
PetaLinux 2017.4.1 operating system. The 8xSIMD EdkDSP IP is controlled by the 32bit MicroBlaze processor.

The MicroBlaze runs programs from the DDR3 memory. The DDR3 is interfaced by an Instruction and Data cache
(32k x 32bit) with HP0 AXI interface.

The 8xSIMD EdkDSP IP is connected to the MicroBlaze by local dual-ported memories. MicroBlaze implements
data communication from DDR3 to 8xSIMD EdkDSP dual-ported memories in software. This communication is
performed in parallel with the 8xSIMD parallel floating point computation in the 8xSIMD EdkDSP IP.

Parameters of the 8xSIMD EdkDSP IP core
8x SIMD EdkDSP floating point accelerator IP core supports 8xSIMD vector floating point operations performed
from/to dual-ported BRAMs A, B , Z. Each dual-ported BRAM has 8 parallel layers of 1024 32 bit words. The set
of supported floating point operations is different for different grades [10|20|30|40] of the 8xSIMD EdkDSP
accelerator IPs. The supported floating point operations are summarised in Table 2.

 The accelerator bce_fp12_1x8_0_axiw_v1_10 is area optimized and supports only data transfers and vector
floating point operations FPADD, FPSUB in 8 SIMD data paths.

 The accelerator bce_fp12_1x8_0_axiw_v1_20 performs identical operations as
bce_fp12_1x8_0_axiw_v1_10 plus the vector floating point MAC operations in 8 SIMD data paths. MAC is
supported for length of vectors 1 up to 10. This accelerator is optimized for applications like floating point
matrix multiplication with one row and column dimensions <= 10.

 The accelerator bce_fp12_1x8_0_axiw_v1_30 supports identical operations as
bce_fp12_1x8_0_axiw_v1_20 plus HW-accelerated computation of the floating point vector-by-vector dot-
product operators performed in 8 SIMD data paths. It is optimized for parallel computation of up to 8 FIR or
LMS filters, each with size up to 250 coefficients. It is also efficient in case of floating point matrix by matrix
multiplications, where one of the dimensions is large (in the range from 11 to 250).

 The accelerator bce_fp12_1x8_0_axiw_v1_40 supports identical operations as
bce_fp12_1x8_0_axiw_v1_30 plus an additional HW support of dot product. It is computed in 8 data paths
with HW-supported wind-up into single scalar result propagated into all SIMD planes.

All bce_fp12_1x8_0_axiw_v1_[10|20|30|40] accelerators support single data path for pipelined, floating-point
division operations with vector operands taken from the first SIMD plain and the result is propagated into all 8
SIMD plains.

All bce_fp12_1x8_0_axiw_v1_[10|20|30|40] accelerators are suitable for applications like adaptive normalised
LMS and NLMS filters and square root free versions of adaptive RLS QR filters and adaptive RLS LATTICE filters.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

8/75

http://zs.utia.cas.cz

Table 2: (8xSIMD) EdkDSP bce_fp12_1x8_40 accelerator vector operations.

Name in MicroBlaze C value (dec) 8xSIMD Floating point Operation

WAL_BCE_JK_VVER = 0 Return capabilities of the (8xSIMD) EdkDSP accelerator

WAL_BCE_JK_VZ2A = 1 8xSIMD copy am[i] <= zm[j]; m=1..8 IP core: 10,20,30,40
WAL_BCE_JK_VB2A = 2 8xSIMD copy am[i] <= bm[j]; m=1..8 IP core: 10,20,30,40
WAL_BCE_JK_VZ2B = 3 8xSIMD copy bm[i] <= zm[j]; m=1..8 IP core: 10,20,30,40
WAL_BCE_JK_VA2B = 4 8xSIMD copy bm[i] <= am[j]; m=1..8 IP core: 10,20,30,40

WAL_BCE_JK_VADD = 5 8xSIMD add zm[i] <= am[j] + bm[k]]; m=1..8 IP core: 10,20,30,40
WAL_BCE_JK_VADD_BZ2A = 6 8xSIMD add am[i] <= bm[j] + zm[k]]; m=1..8 IP core: 10,20,30,40
WAL_BCE_JK_VADD_AZ2B = 7 8xSIMD add bm[i] <= am[j] + zm[k]]; m=1..8 IP core: 10,20,30,40

WAL_BCE_JK_VSUB = 8 8xSIMD sub zm[i] <= am[j] - bm[k]; m=1..8 IP core: 10,20,30,40
WAL_BCE_JK_VSUB_BZ2A = 9 8xSIMD sub am[i] <= bm[j] - zm[k]; m=1..8 IP core: 10,20,30,40
WAL_BCE_JK_VSUB_AZ2B = 10 8xSIMD sub bm[i] <= am[j] - zm[k]; m=1..8 IP core: 10,20,30,40

WAL_BCE_JK_VMULT = 11 8xSIMD mult zm[i] <= am[j] * bm[k]; m=1..8 IP core: 10,20,30,40

WAL_BCE_JK_VMULT_BZ2A = 12 8xSIMD mult am[i] <= bm[j] * zm[k]; m=1..8 IP core: 10,20,30,40
WAL_BCE_JK_VMULT_AZ2B = 13 8xSIMD mult bm[i] <= am[j] * zm[k]; m=1..8 IP core: 10,20,30,40

WAL_BCE_JK_VPROD = 14 8xSIMD vector products: IP core: 30,40
 zm[i] <= am'[j..j+nn]*bm[k..k+nn]; m=1..8; nn range 1..255

WAL_BCE_JK_VMAC = 15 8xSIMD vector MACs: IP core: 20,30,40
 zm[i..i+nn] <= zm[i..i+nn] + am[j..j+nn] * bm[k..jk+nn];
 nn range 1..13

WAL_BCE_JK_VMSUBAC = 16 8xSIMD vector MSUBACs IP core: 20,30,40
zm[i..i+nn] <= zm[i..i+nn] - am[j..j+nn] * bm[k..jk+nn];
 nn range 1..13

WAL_BCE_JK_VPROD_S8 = 17

8xSIMD vector product (extended) IP core: 40
 zm[i] <= ((a1'[j..j+nn]*b1[k..k+nn]+a2'[j..j+nn]*b2[k..k+nn])
 + (a3'[j..j+nn]*b3[k..k+nn]+a4'[j..j+nn]*b4[k..k+nn]))
 +
 ((a5'[j..j+nn]*b5[k..k+nn]+a6'[j..j+nn]*b6[k..k+nn])
 + (a7'[j..j+nn]*b7[k..k+nn]+a8'[j..j+nn]*b8[k..k+nn]));
 m=1..8; nn range 1..255

WAL_BCE_JK_VDIV = 20 vector division (extended) IP core: 10,20,30,40
zm[i] <= a1[j] / b1[k]; m=1..8

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

9/75

http://zs.utia.cas.cz

Ports of the 8xSIMD EdkDSP accelerator

 bce_atoa[0:9] Memory A address (addressing 1024 32 bit floating point values)

 bce_atob[0:9] Memory B address (addressing 1024 32 bit floating point values)

 bce_atoz[0:9] Memory Z address (addressing 1024 32 bit floating point values)

 bce_done[0:7] Vector operation in progress or finished

 bce_led4b[0:3] 4 bit output, intended for led signalling. (Unconnected in the evaluation design).

 bce_mode[0:3] Mode of the communication protocol PicoBlaze6 - MicroBlaze

 bce_op[0:7] Vector operation to be performed.

 bce_port[0:7] 8 bit output port. (Unconnected in the evaluation design).

 bce_port_id[0:7] 8 bit output External port address.
Address space [0x0 ... 0x1F] is reserved for optimized construction of the VLIW
instruction to the 8xSIMD vector processing unit of the EdkDSP.
Address space [0x20 ... 0xFF] can be used by the user.

 bce_port_wr 1 bit output. Write strobe for write of 8 bit data to the external port address.

 bce_r_pb 1 bit output. Reset of the PicoBlaze6.

 bce_we 1 bit output. Write strobe signals start of execution of a VLIW instruction by the
 8xSIMD vector processing unit of the EdkDSP.

 bce_dip4b[0:3] 4bit input (Connected to a constant in the evaluation design).

 Bce_gpi8b[0:7] 8bit input (Connected to a constant in the evaluation design).

Figure 3: 8xSIMD EdkDSP floating point accelerator IP core with System ILA.

Interface of the 8xSIMD EdkDSP IP to the MicroBlaze processor
The EdkDSP IP core is connected to the 100 MHz MicroBlaze processor via the 100 MHz 32bit AXI lite bus
represented by port s_axi, 100 MHz clock input axi_aclk and an asynchronous reset signal axi_aresetn. See
Figure 3.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

10/75

http://zs.utia.cas.cz

The debug ports are used for the real-time visualisation, debug and analysis of the computation implemented
inside of the 8xSIMD data flow unit (DFU) of the (8xSIMD) EdkDSP accelerator IP. This makes easier to debug the
compiled PicoBlaze6 firmware code. The implemented in circuit logic analyser (System ILA) debug probes can
capture 8192 data samples in case of TE0720-03-2IF and TE0720-03-1QF module and 2048 data samples in case
of TE0720-03-14S-1C module. System ILA provides visibility for the auto-generated addresses and for the
detailed schedule of vector operation in the 8xSIMD EdkDSP IP core. See Figure 3.

Figure 4 presents connection of the two parts of the 8xSIMD EdkDSP IP core.

Figure 4: Internal details of (8xSIMD) EdkDSP floating point accelerator IP core.

All bce_fp12_1x8_0_axiw_v1_[10|20|30|40] accelerators versions have identical Edk IP part.

The DSP part has identical ports and connectivity for all bce_fp12_1x8_0_axiw_v1_[10|20|30|40] accelerators
versions.

The Edk part of the EdkDSP floating point accelerator IP core bce_fp12_1x8_0_axiw_v1_0_c includes inside the
PicoBlaze6 controller, its program memories P0 and P1 and the 8xSIMD dual-ported block-ram memories 8xA,
8xB and 8xZ designed for parallel access. The bce_fp12_1x8_0_axiw_v1_0_c IP is designed in the Xilinx System
Generator 14.5 and ported to the Vivado 2017.4.1 compatible IP core. The PicoBlaze6 firmware executes C code
and supports C constructs like loops, while, if, else, function calls etc.

The first of the two ports of all block-rams are accessed by the MicroBlaze as memory via the Axi-lite bus.

 The second of the two ports of both program memories P0 and P1 are connected to the PicoBlaze6
controller.

 The second of the two ports of all data memories 8xA, 8xB and 8xZ are connected to the floating point
data paths of the data flow unit (DFU) unit and support parallel access.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

11/75

http://zs.utia.cas.cz

The DFU bce_fp12_1x8_0_dsp is designed in the Xilinx System Generator for DSP 2017.4.1. It contains 8
pipelined floating point ADD units, 8 pipelined floating point MULT units and one pipelined floating point DIV
unit. The DFU supports all vector operations defined in Table 2.

 The 100bit VLIW instruction is transferred in two 50bit ports mem_bce_i_lo and mem_bce_i_hi. The
VLIW instruction is set by dedicated PicoBlaze6 output ports. See Table 3.

 The 8xSIMD data flow unit executes 8xSIMD floating point operations defined in Table 2.

 The concrete 8xSIMD operation is defined by the PicoBlaze6 DFU_OP 8bit output register driving the
mem_bce_op port of the bce_fp12_1x8_0_axiw_v1_0_c IP. The transfer of the complete VLIW
instruction (100+8 bits) is triggered by the write strobe signal mem_bce_we. It is activated by PicoBlaze6
program write of the 8xSIMD operation DFU_OP. See Table 3.

The 8xSIMD data flow unit (DFU) indicates end of the operation in the 8bit output port mem_bce_done.
PicoBlaze6 program can execute few instructions in parallel to the 8xSIMD operation defined in DFU_OP. End of
the 8xSIMD operation is detected by the PicoBlaze6 program by reading of the input 8bit port mem_bce_done.
PicoBlaze6 firmware defines the sequence of VLIW instructions for the 8xSIMD DFU unit by its dedicated output
registers. PicoBlaze6 addresses of these dedicated output registers are listed in Table 3.

Table 3: PicoBlaze6 ports forming VLIW instruction for the 8xSIMD EdkDSP data flow unit.

PicoBlaze6 registers used for definition of
the 100 bit wide VLIW instruction for the
EdkDSP Data Flow Unit

Format
[msb..lsb]

VLIW
[2x 50bit]
mem_bce_i_hi
mem_bce_i_lo

Description of sections defined in the
VLIW instruction for the EdkDSP Data
Flow Unit

[00b, DFU_CNT] [2bit,8bit] 10 bit [49..40] Number of 8xSIMD steps (0 .. 255)

[00b, DFU_Z_INC] [2bit,8bit] 10 bit [39..30] Auto increment of Z address (0 .. 255)

[DFU_Z_MEM_BANK, DFU_Z_MEM_SADDR] [2bit,8bit] 10 bit [29..20] Set Z address after auto incr overflow

[DFU_Z_MEM_BANK, DFU_Z_MEM_ADDR] [2bit,8bit] 10 bit [19..10] Initial Z address

[00b, DFU_B_INC] [2bit,8bit] 10 bit [09..00] Auto increment of B address (0 .. 255)

[DFU_B_MEM_BANK, DFU_B_MEM_SADDR] [2bit,8bit] 10 bit [49..40] Set B address after auto incr overflow

[DFU_B_MEM_BANK, DFU_B_MEM_ADDR] [2bit,8bit] 10 bit [39..20] Initial B address

[00b, DFU_A_INC] [2bit,8bit] 10 bit [29..20] Auto increment of A address (0 .. 255)

[DFU_A_MEM_BANK, DFU_A_MEM_SADDR] [2bit,8bit] 10 bit [19..10] Set A address after auto incr overflow

[DFU_A_MEM_BANK, DFU_A_MEM_ADDR] [2bit,8bit] 10 bit [09..00] Initial A address

[0000b, PBP_REG01] [4bit,4bit] 8 bit Set actual VLIW instr. memory (0 .. 15)

[DFU_OP] [8bit] 8 bit Execute SIMD operation with
parameters in the actual VLIW instr.
memory (set by the PBP_REG01 port).

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

12/75

http://zs.utia.cas.cz

3. EdkDSP IP Core – PicoBlaze6 C Application Interface Functions

The EdkDSP compiler embedded compilation of simple C and ASM programs or the PicoBlaze6 controller.
PicoBlaze6 programs can use predefined and precompiled library functions listed in Table 4. Functions are
optimized in the PicoBlaze6 assembler code, and occupy fixed area of the firmware and serve as common simple
API for C and ASM PicoBlaze6 programs.

PicoBlaze6 firmware image with precompiled support functions is present in MicroBlaze header file
fill_def_program_store.h PicoBlaze6 application program firmware is merged with this precompiled image by
the MicroBlaze SW program.

Table 4: PicoBlaze6 precompiled support functions

PicoBlaze6 predefined functions Description

unsigned char mb2pb_read_data(); Single unsigned char from MicroBlaze to PicoBlaze6

void pb2mb_write(unsigned char data); Single unsigned char from PicoBlaze6 to MicroBlaze

void pb2mb_eoc(unsigned char data); EOC unsigned char from PicoBlaze6 to MicroBlaze

void pb2mb_req_reset(unsigned char data); Request from PicoBlaze6 to MicroBlaze to initiate PB reset

void pb2mb_reset(); Information from PicoBlaze6 to MicroBlaze - PB reset

void pb2dfu_set(unsigned char mem,
unsigned char data);

Set one section of the VLIW instruction for the data flow unit
(DFU) to an unsigned char data. VLIW instruction sections are
addressed as PicoBlaze6 8bit output ports defined in Table 3

void pb2dfu_wait4hw(); PicoBlaze6 function is waiting for the termination of data flow
unit operation.

unsigned char led2pb(); Write from PicoBlaze6 to 4 bit led output port

unsigned char btn2pb(); Read from 4 bit input port to PicoBlaze6

unsigned char hex_h(unsigned char ch); Translate upper 4 bit nibble of an unsigned char to ascii

unsigned char hex_l(unsigned char ch); Translate lower 4 bit nibble of an unsigned char to ascii

void pb2lcd_ascii_char(unsigned char ch,
unsigned char pos);

Write from PicoBlaze6 to LCD asci alphanumerical display

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

13/75

http://zs.utia.cas.cz

4. EdkDSP IP Core – MicroBlaze C Application Interface Functions

MicroBlaze program is responsible for data communication, programming and initialization of the PicoBlaze6
and global scheduling of the implemented algorithm. The API providing MicroBlaze - Picoblaze6 interface is
called Worker Abstraction Layer (WAL).

 8xSIMD EdkDSP memory pointers and program memory pointers (from MicroBlaze view) are defined in
Table 5.

 WAL error codes are defined in Table 6.

 8xSIMD EdkDSP is supported by API functions collected in the WAL API are listed and described in Table

7.

Table 5: MicroBlaze access names to 8xSIMD EdkDSP memory banks

MicroBlaze access names Description of the 8xSIMD EdkDSP memory banks

WAL_BCE_JK_DMEM_A index of the A data memory banks (8x [0..1023] 32bit words)

WAL_BCE_JK_DMEM_B index of the B data memory banks (8x [0..1023] 32bit words)

WAL_BCE_JK_DMEM_Z index of the Z data memory banks (8x [0..1023] 32bit words)

WAL_CMEM_MB2PB index to MB2PB control memory (the control register of the worker)

WAL_CMEM_PB2MB index to PB2MB control memory (the status register of the worker)

WAL_PBID_P0 index to P0 control memory (PicoBlaze program memory 1)

WAL_PBID_P1 index to P1 control memory (PicoBlaze program memory 2)

Table 6: MicroBlaze WAL error codes

MicroBlaze WAL codes Value Description

WAL_RES_OK 0 all is OK

WAL_RES_WNULL 1 argument is a NULL

WAL_RES_ERR -1 generic error

WAL_RES_ENOINIT -2 not initiated

WAL_RES_ENULL -3 null pointer

WAL_RES_ERUNNING -4 worker is running

WAL_RES_ERANGE -5 index/value is out of range

Table 7: MicroBlaze API functions for communication with 8xSIMD EdkDSP IP core

MicroBlaze API functions for communication with 8xSIMD EdkDSP IP core

wal_init_worker() - generalised function for worker initialising

*wrk is a pointer to the worker structure.

This function is designed for calling from user application. The function checks if the *wrk structure is prepared
to initiate worker (the family description structure must be set). Then the assigned family function (init_wrk())
is called. In the called function all arrays of pointers to shared memories should be initiated.

Return Value: The function returns return code WAL_RES_OK if successful and WAL_RES_E... if any error occurs.

int wal_init_worker(struct wal_worker *wrk);

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

14/75

http://zs.utia.cas.cz

wal_done_worker - generalised function for worker clean-up

*wrk is a pointer to the worker structure

This function is designed for calling from user application. The function calls done function (done_wrk())
assigned to family description structure. In the called function all dynamically allocated worker structures,
memories and resources should be clean-up and released if they have been created in the worker init function.

Return Value: The function returns WAL_RES_... codes.

int wal_done_worker(struct wal_worker *wrk);

wal_reset_worker() - generalised function for worker hard reset

*wrk is a pointer to the worker structure

This function is designed for calling from user application. The function calls reset function (reset_wrk())
assigned to the family description structure. In the called function the worker control registers should be reset
(by HARD RESET bit in the worker control register). The reset is not acknowledged by accelerator.

Return Value: The function returns WAL_RES_... codes.

int wal_reset_worker(struct wal_worker *wrk);

wal_start_operation() - generalised function for starting operation on the accelerator.

*wrk is a pointer to the worker structure. *pbid is an index of used PB firmware (WAL_PBID_...)

This function is designed for calling from user application. The function checks if the accelerator is in the idle
state and then it calls function for starting operation (start_op()) assigned to the family description structure.
The called function should start a new accelerator operation by setting accelerator control register and
checking status register. This function is blocking, i.e. it waits for acknowledgement from accelerator.

Return Value: The function returns WAL_RES_... codes.

int wal_start_operation(struct wal_worker *wrk, unsigned int pbid);

wal_end_operation() - generalised function for finishing operation on the accelerator.

*wrk is a pointer to the worker structure.

This function is designed for calling from user application. The function checks if the accelerator is in processing
state and then it calls function for ending operation (end_op()) assigned to the family description structure. The
called function should stop processing operation on the accelerator. And it waits for synchronization with the
accelerator, therefore the function is blocking.

Return Value: The function returns WAL_RES_... codes.

int wal_end_operation(struct wal_worker *wrk);

wal_mb2pb() - generalised function for setting worker control register.

*wrk is a pointer to the worker structure. data is user data to be send to worker control register.

This function is designed for calling from user application. The function calls function for setting worker control

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

15/75

http://zs.utia.cas.cz

register (mb2pb()) assigned to the family description structure. The called function should send user data
through control register with controlling READ bit. It should also waits for synchronization with accelerator.

Return Value: The function returns WAL_RES_… codes.

int wal_mb2pb(struct wal_worker *wrk, const uint32_t data);

wal_pb2mb() - generalised function for reading worker status register.

*wrk is a pointer to the worker structure. *data is a pointer to an output buffer where read user data is
written.

This function is designed for calling from user application. The function calls function for reading worker status
register (pb2mb()) assigned to the family description structure. The called function should read user data
through worker status register with waiting for synchronization with accelerator.

Return Value: The function returns WAL_RES_… codes.

int wal_pb2mb(struct wal_worker *wrk, uint32_t *data);

wal_mb2cmem() - generalised function for writing a block of data to any worker control or support

memory

*wrk is a pointer to the worker structure. memid is an index of control/support memory where data are
written to (WAL_CMEM_... or WAL_..._SMEM_...). memoffs is offset in selected memory (in words not in
bytes). outbuf is a pointer to memory where data are read from. len is a number of words to copy from outbuf
to accelerator control memory.

This function is designed for calling from user application. The function checks index of the required memory
and then it calls function for writing data to any control/support memory (mb2cmem()) assigned to the
family description structure. The called function should get a pointer to the right memory according to the
required index memid. For accessing support memories they have to define indices greater then indices to
control memories. Then the called function should copy a block of data from CPU memory outbuf to an
accelerator control/support memory selected by memid and offset in selected memory memoffs.

Return Value: The function returns WAL_RES_... codes.

int wal_mb2cmem(struct wal_worker *wrk, unsigned int memid,
 unsigned int memoffs, const uint32_t *outbuf, unsigned int len);

wal_cmem2mb() - generalised function for reading a block of data from any worker control or support

memory

*wrk is a pointer to the worker structure. memid is an index of control/support memory where data are read
from
(WAL_CMEM_... or WAL_..._SMEM_...). memoffs is offset in selected memory (in words not in bytes). *inbuf
is a pointer to memory where data are written to. len is a number of words to copy from accelerator control
memory.

This function is designed for calling from user application. The function checks index of the required memory
and then it calls function for reading data from any control/support memory (cmem2mb()) assigned to the
family description structure. The called function should get a pointer to the right memory according to the
required index memid. For accessing support memories they have to define indices greater then indices to

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

16/75

http://zs.utia.cas.cz

control memories. Then the called function should copy a block of data from the accelerator control/support
memory selected by memid and offset in selected memory memoffs.

Return Value: The function returns WAL_RES_... codes.

int wal_cmem2mb(struct wal_worker *wrk, unsigned int memid,
 unsigned int memoffs, uint32_t *inbuf, unsigned int len);

wal_mb2dmem() - generalised function for writing a block of data to any worker data memory

*wrk is a pointer to the worker structure. simdid is an index of SIMD which data memories are indexed. memid
is an index of control/support memory where data are written to (WAL_CMEM_... or WAL_..._SMEM_...).
memoffs is offset in selected memory (in words not in bytes). *outbuf is a pointer to memory where data are
read from. len is a number of words to copy from *outbuf to accelerator control memory.

This function is designed for calling from user application. The function checks index of the required memory
and then it calls function for writing data to any data memory (mb2dmem()) assigned to the family description
structure. The called function should get a pointer to the right memory according to the required SIMD simdid
and memory index memid. Then the called function should copy a block of data from CPU memory *outbuf to
the accelerator data memory with offset inside the selected memory memoffs.

Return Value: The function returns WAL_RES_... codes.

int wal_mb2dmem(struct wal_worker *wrk, unsigned int simdid, unsigned int memid,
 unsigned int memoffs, const void *outbuf, unsigned int len);

wal_dmem2mb() - generalised function for writing a block of data to any worker data memory

*wrk is a pointer to the worker structure. simdid is an index of SIMD which data memories are indexed. memid
is an index of control/support memory where data are read from (WAL_CMEM_... or WAL_..._SMEM_...).
memoffs is offset in selected memory (in words not in bytes). *inbuf is a pointer to memory where data are
written to. len is a number of words to copy from accelerator control memory.

This function is designed for calling from user application. The function checks index of the required memory
and then it calls function for reading data from any data memory (dmem2mb()) assigned to the family
description structure. The called function should get pointer to the right memory according to the required
SIMD simdid and memory index memid. Then the called function should copy a block of data from the
accelerator data memory with offset inside the selected memory memoffs.

Return Value: The function returns WAL_RES_... codes.

int wal_dmem2mb(struct wal_worker *wrk, unsigned int simdid, unsigned int memid,
 unsigned int memoffs, void *inbuf, unsigned int len);

wal_set_firmware() - generalised function for writing PicoBlaze firmware

*wrk is a pointer to the worker structure. pbid is an index of used PB firmware (WAL_PBID_...). *fwbuf is a
pointer to a firmware in CPU memory. fwsize is a size of the firmware in words, it can be a negative value to set
full firmware (4096 words).

This function is designed for calling from user application. The function checks if all arguments are correct and
then it calls function for writing PB firmware (set_fw()). The called function should copy firmware from CPU
memory *fwbuf to PicoBlaze6 program memory in the accelerator. The PB program memory is selected by the

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

17/75

http://zs.utia.cas.cz

argument pbid. The firmware needn't be full 4096 word long. The firmware length (in words) can be set by the
argument fwsize. If the fwsize is a negative value (you can use defined value WAL_FW_WHOLE) the function
assumes the FW length is 4096 words.

Return Value: The function returns WAL_RES_... codes.

int wal_set_firmware(struct wal_worker *wrk, int pbid, const unsigned int *fwbuf, int fwsize);

wal_bce_jk_get_id() - implementation of the worker get_id() function for the BCE_JK families

*wrk is a pointer to the worker structure. pbid is an index of used PB firmware (WAL_PBID_...). outval is a
pointer to an output buffer for read worker ID.

The function emulates reading worker ID from hardware because the BCE_JK families don't support this
operation in the hardware.

Return Value: The function always returns WAL_RES_OK.

int wal_get_id(struct wal_worker *wrk, int pbid, unsigned int *outval);

wal_bce_jk_get_cap() - implementation of the worker get_cap() function for the BCE_JK families

*wrk is a pointer to the worker structure. pbid is an index of used PB firmware (WAL_PBID_...). *outval is a
pointer to an output buffer for read capabilities.

The function sends operation WAL_BCE_JK_VVER to accelerator, reads the worker capabilities and returns the
read value in the *outval buffer.

Return Value: The function returns WAL_RES_... codes.

int wal_get_capabilities(struct wal_worker *wrk, int pbid, unsigned int *outval);

wal_bce_jk_get_lic() - implementation of the get_lic() function for the BCE_JK families

*wrk is a pointer to the worker structure. pbid is an index of used PB firmware (WAL_PBID_...). *outval is a
pointer to an output buffer for read license.

The function reads the license from the worker. For BCE_JK families the license is a 2bit license down-counter
contained in the value returned by accelerator operation WAL_BCE_JK_VVER. The 2bit license counter is
returned in the *outval buffer.

Return Value: The function returns WAL_RES_... codes.

int wal_get_license(struct wal_worker *wrk, int pbid, unsigned int *outval);

All worker abstraction layer API functions listed in Table 7 are precompiled into the MicroBlaze library wal.a and
declared in MicroBlaze header files wal.h and wal_bce_jk.h .

The worker abstraction layer API functions listed in Table 7 support instantiation of several (more than 1)
instances of the 8xSIMD EdkDSP IP core.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

18/75

http://zs.utia.cas.cz

5. EdkDSP IP Core – Integration with dual core ARM A9 Linux

The 8xSIMD EdkDSP IP core is integrated in a tester system with architecture presented in
Figure 2 and photo of the HW presented in Figure 1 and Figure 5.

The dual core ARM Cortex A9 system runs configured PetaLinux 2017.4.1 operating system and supports:

 Ethernet 1 Gbit

 SSH, telnet, FTP, …

 The system image is located on SD card. After the initial boot, the file system is decompressed to the
RAM FS in DDR3. The SD card file system is mounted and visible in the running PetaLinux.

 Symmetrical multiprocessing on two ARM A9 processors

 SDSoC 2017.4.1 generated HW accelerators with data movers based on:
o Simple DMA with HW supported data movers (DMA data width 32bit or 64bit) with no ARM

interrupts. Simple DMA requires allocation of continuous memory space.
o SG DMA with data movers (DMA data width 32bit or 64bit) with ARM interrupts. SG DMA can

work with continuous allocation of memory or with standard Linux allocation of memory,
where the continuous allocation is not guaranteed.

o HW data movers connected to the advanced cache coherent port resolving in HW the cache
coherency of dual core ARM access and data mover access to DDR3.

The MicroBlaze processor and the 8xSIMD EdkDSP IP core require initialisation and synchronisation with Linux
and the dual core ARM subsystem. This is arranged by the following configuration of reserved DDR3 memory (1
GB)

Table 8: Organisation of DDR3 memory

Memory Area (in Bytes) Size Description

0x0000 0000 … 0x27FF FFFF 640 M Byte Memory managed by standard Linux memory allocation
mechanism. Used by dual core Arm A9 symmetrical
multiprocessing 32 bit Linux

0x2800 0000 … 0x280F FFFF 1 M Byte Reserved for MicroBlaze – ARM communication
It is continuous memory reserved in Linux configuration

 0x2800 0000 … 0x2810 0FFF 4 kByte Reserved for PicoBlaze6 f0 firmware (MicoBlaze and ARM)

 0x2800 1000 … 0x2810 1FFF 4 kByte Reserved for PicoBlaze6 f1 firmware (MicoBlaze and ARM)

 0x2800 2000 … 0x2810 2FFF 4 kByte Reserved for PicoBlaze6 f2 firmware (MicoBlaze and ARM)

 0x2800 3000 … 0x2810 3FFF 4 kByte Reserved for PicoBlaze6 f3 firmware (MicoBlaze and ARM)

 0x2800 4000 … 0x281F FFFF Reserved Reserved for 8xSIMD EdkDSP data (MicoBlaze and ARM)

0x2810 0000 … 0x29FF FFFF 15 M Byte MicroBlaze program & data. Microblaze processor IP is
configured for execution of its code from 0x28100000.
It is a part of the continuous memory reserved in Linux.

0x2A00 0000 … 0x2FFF FFFF 112 M Byte Continuous memory reserved for video frame buffers.

0x3000 0000 … 0x3FFF FFFF 256 M Byte Memory reserved for SDSoC data mover and DMA drivers.

Linux user application uses the four reserved 4k Byte areas for copy of four PicoBlaze6 firmware programs.
These programs can be compiled on the dual core ARM A9 from the C and ASM source codes stored as asci files
on the mounted SD card file system. Compiled firmware programs are read by the user application running on
ARM from the SD card files and copied as data to the reserved 4kB continuous memory areas. MicroBlaze
program (after HW mutex based synchronisation) reads this data and uses them for programming of PicoBlaze6
FSM of the 8xSIMD EdkDSP IP.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

19/75

http://zs.utia.cas.cz

6. Setup of Hardware

HW setup is based on components [1], [2], [3], [4], [5] designed and manufactured by company Trenz Electronic:

TE0720-03-2IF; Part: XC7Z020-2CLG484I; 1 GByte DDR; Industrial Grade (Tj = -40°C to +100°C) [1].
TE0720-03-1QF; Part: XA7Z020-1CLG484Q; 1 GByte DDR; Automotive Grade (Tj = -40°C to +125°C) [1].
TE0720-03-214S-1C; Part: XC7Z014S-1CLG484C; 1 GByte DDR; Industrial Grade (Tj = 0°C to +85°C) [1].
Heatsink for TE0720, spring-loaded embedded [2]. The heatsink serves for the passive cooling of Zynq module.
TE0706-02 Carrier Board from Trenz Electronic [3]. Board targets extension with second Ethernet in the Zynq PL.
TE0703-05 Carrier Board from Trenz Electronic [3]. Board targets wide I/O with pre-processing in a Lattice FPGA.
Pmod USBUART Serial converter & interface [4]. Serves for output from MicroBlaze to PC console via PC USB.
TE0790-02 XMOD FTDI JTAG Adapter - Xilinx compatible [5]. Supports console and Jtag in case of TE0706-02.

The technical reference manuals (TRM) of the TE0720-03-2IF, TE0720-03-1QF and TE0720-03-214S-1C modules
can be downloaded from [1] and TRM for carrier board TE0706-02 or TE0703-05 can be downloaded from [3].

Figure 5: TE0706-02; TE0720-03-14S-1C; USBUART and XMOD FTDI JTAG adapter

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

20/75

http://zs.utia.cas.cz

Configuration of switches and jumpers on carrier boards TE0703-05 and TE0706-02

Configuration of the TE0703-05 board (and the TE0720-03-1CFA-S starter kit with the TE0703-05 carrier)

 Set jumpers of the TE0703-05 board to VCCIOA=3.3V; VCCIAOB=1.8V; VCCIOC=3.3V; VCCIOD=3.3V by:
J5: connect 2-3; J8: connect 1-2; J9: connect 2-3; J10: connect 2-3

 Set switch S1 of the TE0706-02 board to:
 1=OFF; 2=ON; 3=ON; 4=ON

Configuration of TE0706-02 board

 Set jumpers of the TE0706-02 board to generate VCCIOA=3.3V; VCCIOC=3.3V; VCCIOD=3.3V by
J10: connect 2-3; J11: connect 2-3; J12: connect 2-3
In case of the TE0706-02 board the VCCIAOB=1.8V is set directly on the PCB (no dedicated jumper).

 Set switch S1 of the TE0706-02 board to:
 1=ON; 2=ON; 3=ON; 4=OFF

Configuration of TE0790-02 xmod adapter
The TE0706-02 board ARM serial terminal/JTAG is connected to the PC by a Mini USB (type B) cable via the
TE0790-02 XMOD FTDI JTAG adapter [5]. See Figure 1 and Figure 5.

 Set switch in the XMOD module to:

 1=ON; 2=OFF; 3=ON; 4=OFF;
The jumper on the USBUART pmod is set to the default: connect lcl-vcc. With this setup, the USBUART pmod
convertor chip is powered from the PC 5V USB source. The TE0790-02 xmod adapter generates its local 3.3V
power supply by an on-module DC2DC power converter. See Figure 1 and Figure 5.

Configuration of USBUART pmod adapter
The serial terminal for MicroBlaze is connected to the PC by a Micro USB cable via the USBUART pmod adapter.
The J6 connector on the TE0706-02 and J2 connector on the TE0703-05 have three lines of 32 pins named:

[A1 A2 A3 A4 A5 A6 … A32]
[B1 B2 B3 B4 B5 B6 … B32]
[C1 C2 C3 C4 C5 C6 … C32]

In case of the TE0706-02 board, the USBUART pmod is connected to pins [B1 … B6] of connector J6B
(central line B). See Table 9, Figure 6 and the concrete implemented solution on Figure 5:

Table 9: Connection of USBUART to TE0706-02

TE0706-02 USBUART Name Function

J6 pin B1 J2 pin 6 3.3V Disconnected by USBUART jumper. Power for USBUART from PC USB 5V

J6 pin B2 J2 pin 5 GND Ground

J6 pin B4 J2 pin 3 TXD FPGA Pin: AB2; FPGA design net: uart_pmod_tx; Direction: from PC to FPGA

J6 pin B5 J2 pin 2 RXD FPGA pin: U5; FPGA design net: uart_pmod_rx; Direction: from FPGA to PC

In case of the TE0703-05, the USBUART pmod can be also to pins [B1 … B6] of the connector J2 if the
communication from PC to MicroBlaze is not needed. If needed, use a custom cable. See Table 10 and Figure 7.

Table 10: Connection of USBUART to TE0703-05

TE0703-05 USBUART Name Function

J2 pin B1 J2 pin 6 3.3V Disconnected by USBUART jumper. Power for USBUART from PC USB 5V

J2 pin B2 J2 pin 5 GND Ground

J2 pin C3 J2 pin 3 TXD FPGA Pin: AB2; FPGA design net: uart_pmod_tx; Direction: from PC to FPGA

J2 pin B5 J2 pin 2 RXD FPGA pin: U5; FPGA design net: uart_pmod_rx; Direction: from FPGA to PC

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

21/75

http://zs.utia.cas.cz

1. 5V power connector jack, J1
2. Reset switch, S2
3. USB2.0 type A receptacle, J7
4. Micro SD card socket with Card Detect, J4
5. 50 pin IDC male connector, J5
6. 1000Base-T Gigabit RJ45 Ethernet MagJack, J3
7. 1000Base-T Gigabit RJ45 Ethernet MagJack, J2
8. XMOD JTAG- / UART-header, JX1
9. User DIP-switch, S1
10. VCCIO selection jumper block, J10 - J12
11. External connector (VG96) placeholder, J6
12. Samtec Razor Beam™ LSHM-150 B2B connector, JB1
13. Samtec Razor Beam™ LSHM-150 B2B connector, JB2
14. Samtec Razor Beam™ LSHM-130 B2B connector, JB3

Figure 6: TE0706-02 Carrier Board.

Figure 6 presents main components and connector locations of the TE0706-02 Carrier Board [3].
The evaluation package released together with this application note supports single 1000Base-T Gigabit RJ45
Ethernet MagJack, J3 as Arm A9 PetaLinux eth0. See Figure 6. Output path from MicroBlaze to PC and input path
from the PC keyboard to MicroBlaze is supported by USBUART connected directly to the connector J6: B1…B6
pins. See https://wiki.trenz-electronic.de/display/PD/TE0706+TRM for source of the photo and for detailed description of
the TE0706-02 carrier board.

https://wiki.trenz-electronic.de/display/PD/TE0706+TRM

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

22/75

http://zs.utia.cas.cz

1. Samtec Razor Beam™ LSHM-150 B2B connector, JB1
2. Samtec Razor Beam™ LSHM-150 B2B connector, JB2
3. Samtec Razor Beam™ LSHM-130 B2B connector, JB3
4. Micro SD card socket with detect switch, J3
5. LED indicators D1 and D2
6. Mini-USB type B connector, J4
7. LED indicators D3 and D4
8. Configuration DIP switches, S2
9. User push button (Reset), S1
10. External connector (VG96) placeholder, J1
11. External connector (VG96) placeholder, J2
12. VCCIO voltage selection jumper block, J5, J8, J9 and J10
13. Trxcom 1000Base-T Gigabit RJ45 Magjack, J14
14. USB type A receptacle, J6 (optional micro USB 2.0 type B receptacle available, J12)
15. 5V power connector jack, J13

Figure 7: TE0703-05 Carrier Board.

Figure 7 presents main components and connector locations of the TE0703-05 Carrier Board [3]. The
precompiled designs can be used without modification on the TE0703-05. Output path from MicroBlaze to PC is
supported if the USBUART is connected to the J2: B1…B6 pins directly. Output path from MicroBlaze to PC and
input path from the PC keyboard to MicroBlaze is supported only if the USBUART is connected to the
J2: B1 B2 C3 B5 pins indirectly (via a custom made cable). See https://wiki.trenz-electronic.de/display/PD/TE0703+TRM for
source of the photo and for description of the TE0703-05 carrier board.

https://wiki.trenz-electronic.de/display/PD/TE0703+TRM

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

23/75

http://zs.utia.cas.cz

7. Reference Application for the 8xSIMD EdkDSP IP Core

The reference application is the active acoustics noise cancellation for the hands free telephony.

The near end signal e(i) (voice of a speaker) is disturbed by a disturbance signal received by the near end
microphone. This unknown disturbance y(i) is generated by a known (measured) far end signal (example: noise
from the motor engine) u(i). The objective of the active acoustics noise cancellation is to use the measured
disturbed near end microphone signal d(i) and the signal measured by the far end microphone u(i) for
reconstruction of the near end speaker signal e(i) with cancelled disturbance.

The transfer function from the far end (known) source of the disturbance is modelled by a recursive FIR filter
with 2000 coefficients with sampling rate 75 kHz.

Recursive FIR filter algorithm:
Objective of FIR filter is to generate sequence of modelled system outputs d(i) based on the sequence of system
inputs u(i) and constant vector of N FIR filter coefficients. The generated output sequence includes also the
random additive output noise defined by white noise signal e(i).

x(i) = u(i)
y(i) = [w(1), w(2), … , w(N)] * [x(i), x(i-1), … x(i-N+1)]T

d(i) = y(i) + e(i)

Recursive adaptive LMS filter algorithm:
Objective of adaptive LMS filter is to identify recursively an unknown vector of N=2000 FIR filter coefficients
from a sequence of system inputs u(i) and system outputs d(i) with sampling rate 75 kHz. The algorithm works
under an assumption that the measured output sequence d(i) has been generated by a FIR filter with unknown
coefficients with dimension N=2000 and includes also the unknown random white noise signal. Signal e(i) is
estimated by the adaptive LMS filter.

x(i) = u(i)
y(i) = [w(1), w(2), … , w(N)] * [x(i), x(i-1), … x(i-N+1)]T

e(i) = d[i]-y[i]
[w(1), w(2), … , w(N)] = [w(1), w(2), … , w(N)] + mu * e(i) * [x(i), x(i-1), … x(i-N+1)]

Where N is order of the FIR and LMS filter. N = 2000 in the implemented designs.

u(i) is scalar, floating point input to the system
d(i) is scalar, floating point output of a system
y(i) is scalar, floating point output of FIR filter
e(i) is scalar, floating point prediction error
[w(1), w(2), … , w(N)] is vector of N scalar , floating point FIR filter coefficients, N=2000.
mu is scalar , floating point constant used for control of the speed of convergence of the adaptive LMS filter.

The 8xSIMD EdkDSP IP Core
The 8xSIMD EdkDSP IP Core is configured for accelerated floating point computation of the recursive FIR filter
with constant parameters N=2000 and for acceleration of the adaptive recursive LMS filter with N=2000
unknown coefficients with required sustained sampling frequency 75 kHz. The FIR filter models the environment
and generates the sequence of u(i), d(i) data measurements.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

24/75

http://zs.utia.cas.cz

The LMS filter serves for reconstruction of the unknown e(i) sequence – the speaker voice with partially
cancelled disturbance from the far distance source. Requirements and main implementation results (for the
floating point FIR & LMS filter implementation on the 8xSIMD EdkDSP IP) are listed in Table 11.

Table 11: Requirements and results.

Parameter (Module TE0720-03-2IF) Requirement SW MicroBlaze 100 MHz
Requirements met (YES/NO)

8xSIMD EdkDSP 120 MHz
Requirements met (YES/NO)

FIR filter sampling rate Order N=2000 75 kHz 2.25 kHz (NO) 279.70 kHz (YES)

FIR sustained performance (MFLOPs) 300 MFLOPs 9 MFLOPs (NO) 1119 MFLOPs (YES)

LMS filter sampling rate Order N=2000 75 kHz 1.125 kHz (NO) 90.75 KHz (YES)

LMS sustained performance (MFLOPs) 600 MFLOPs 9 MFLOPs (NO) 728 MFLOPs (YES)

Parameter (Modules
TE0720-03-1QF, TE0720-03-14S-1C)

Requirement SW MicroBlaze 100 MHz
Requirements met (YES/NO)

8xSIMD EdkDSP 100 MHz
Requirements met (YES/NO)

FIR filter sampling rate Order N=2000 75 kHz 2.25 kHz (NO) 244.4 kHz (YES)

FIR sustained performance (MFLOPs) 300 MFLOPs 9 MFLOPs (NO) 978 MFLOPs (YES)

LMS filter sampling rate Order N=2000 75 kHz 1.125 kHz (NO) 77.03 KHz (YES)

LMS sustained performance (MFLOPs) 600 MFLOPs 9 MFLOPs (NO) 618 MFLOPs (YES)

Bit exact identical results for 8xSIMD
EdkDSP IP and MB (FIR and LMS)

Required YES YES

Parallel EdkDSP computation and data
transfers to/from DDR3 by MicroBlaze

Required YES YES

Runtime change of 8xSIMD EdkDSP IP Required NA YES

Embedded 8xSIMD EdkDSP C compiler Required NA YES

Compatibility with SDSoC 2017.4.1 Required YES YES

Compatibility with PetaLinux 2017.4.1 Required YES YES

Compatibility with free SDK 2017.4.1
and free edition of Vivado HLS 2017.4.1

Required YES YES

Summary of main results related to the performance of the 8xSIMD EdkDSP IP:

 The required LMS filter sampling rate 75 KHz (with N=2000) is reached for the TE0720-03-2IF module.

 The maximum sampling rate is 90.75 kHz for the adaptive LMS filter and 279.7 kHz for the FIR filter on
the TE0720-03-2IF module with the 120 MHz 8xSIMD EdkDSP.

 The sustained floating-point performance of the 120 MHz 8xSIMD EdkDSP on TE0720-03-2IF module is
728 MFLOPs in case of the adaptive LMS filter and 1119 MFLOPs in case of the FIR filter.

 The maximum sampling rate is 77.03 kHz for the adaptive LMS filter and 244.4 kHz for the FIR filter on
the on TE0720-03-1QF or TE0720-03-14S-1C module with the 100 MHz 8xSIMD EdkDSP.

 The sustained floating-point performance of the 100 MHz 8xSIMD EdkDSP on TE0720-03-1QF or TE0720-
03-14S-1C module is 618 MFLOPs in case of the adaptive LMS filter and 978 MFLOPs in case of the FIR
filter.

 The 8xSIMD EdkDSP is controlled from the 100 MHz MicroBlaze processor and operates in parallel to the
Cortex A9 processor(s).

 The 8xSIMD EdkDSP operates in parallel to each of the 21 Linux examples and 19 standalone examples
of HW accelerators generated from selected Cortex A9 C/C++ functions in the Xilinx SDSoC 2017.4.1
design environment.

 The embedded C/ASM compiler utilities for the 8xSIMD EdkDSP accelerator run as Linux applications on
the Arm Cortex A9 processor. These utilities can re-compile new EdkDSP firmware from the modified
C/ASM source code in the runtime.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

25/75

http://zs.utia.cas.cz

8. Installation and Use of Base Evaluation Package

This chapter describes the installation and use of a base evaluation package. Package is demonstrating:

 In-circuit Logic Analyser (ILA) JTAG based inspection/observation/debug of the 8xSIMD EdkDSP IP. ILA
works with internal buffer for 8k samples and operates at 100 MHz (1qf and 14s device) and 120 MHz
(2if device). See Figure 9, Figure 10, Figure 11, Figure 12.

 The standalone examples support ILA and additionally can display the on-chip temperature via JTAG. See
Figure 13

 Embedded Compilation from a C/ASM source code to firmware for the reprogrammable PicoBlaze6
finite state machine (FSM) scheduling inside of the 8xSIMD EdkDSP IP core the floating point
computation sequences performed in the 8xSIMD data flow unit (DFU).
This embedded compilation is supported for the Linux examples. See Figure 14 Figure 15, Figure 16.

 There is no need to install Xilinx SDK 2017.4.1, Xilinx Vivado 2017.4.1 tools or Xilinx SDSoC 2017.4.1.

 The In-circuit Logic Analyser (ILA) JTAG based inspection/observation/debug can be performed from the
free Xilinx Lab Vivado 2017.4.1 tool installed on Win7 (64bit) or Win 10 (64bit) PC

 The Linux target examples support 1GBit Ethernet, SSH telnet and file system management tools like the
Total Commander for an ftp based access from PC to the SD card files.

The base evaluation package provides 21 demos for the Linux target and the 19 precompiled demos for the
standalone target. Table 12 describes demos, PL resources and the HW/SW SDSoC 2017.4.1. acceleration data.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

26/75

http://zs.utia.cas.cz

Table 12: Description of ARM SDSoC acceleration examples compatible with 8xSIMD EdkDSP IP

Linux
HW/SW
Acceleration

Standalone
HW/SW
Acceleration

Description of ARM SDSoC acceleration examples. All examples are extended versions
of the Xilinx GitHub SDSoC 2017.1 examples. SW extensions support the initialisation
of the MicroBlaze processor and the 8xSIMD EdkDSP IP core.

te01_l

te01_s

array_partition - This example shows how to use array partitioning to improve
performance of a hardware function. It performs int32 matrix multiplication
C[32,32] = A[32,32] * B[32,32]

2if: 3.39x 2if: 6.62x 150 MHz Slices: 63.20% Luts: 44.36% Registers: 23.69% BRAMs: 76.79% DSPs: 54.55%

1qf: 4.40x 1qf: 7.29x 150 MHz Slices: 65.14% Luts: 43.27% Registers: 26.00% BRAMs: 76.79% DSPs: 54.55%

14s: 4.46x 14s: 7.17x 150 MHz Slices: 63.71% Luts: 56.60% Registers: 34.05% BRAMs: 89.25% DSPs: 70.59%

1cfa: 1cfa: 150 MHz Slices: 65.06% Luts: 44.34% Registers: 24.66% BRAMs: 76.79% DSPs: 54.55%

te02_l

te02_s

burst_rw - This is simple example of using AXI4-master interface for burst read and
write.

2if: 2if: 150 MHz Slices: 56.80% Luts: 38.86% Registers: 21.14% BRAMs: 51.43% DSPs: 9.55%

1qf: 1qf: 150 MHz Slices: 55.72% Luts: 38.89% Registers: 21.14% BRAMs: 51.43% DSPs: 9.55%

14s: 14s: 150 MHz Slices: 54.65% Luts: 50.87% Registers: 27.67% BRAMs: 56.07% DSPs: 12.35%

1cfa: 1cfa: 150 MHz Slices: 56.06% Luts: 38.86% Registers: 21.14% BRAMs: 51.43% DSPs: 9.55%

te03_l

te03_s

custom_data_type - This is a simple example of RGB to HSV conversion to demonstrate
Custom Data Type usage in hardware accelerator. Xilinx HLS compiler supports custom
data type to operate within the hardware function and also it acts as a memory
interface between PL to DDR3.

2if: 22.48x 2if: 25.16x 150 MHz Slices: 60.69% Luts: 42.18% Registers: 22.93% BRAMs: 51.43% DSPs: 10.91%

1qf: 25.43x 1qf: 28.94x 150 MHz Slices: 59.81% Luts: 42.21% Registers: 23.07% BRAMs: 51.43% DSPs: 10.91%

14s: 25.88x 14s: 28.88x 150 MHz Slices: 59.32% Luts: 55.23% Registers: 30.07% BRAMs: 56.07% DSPs: 14.12%

1cfa: 1cfa: 150 MHz Slices: 60.29% Luts: 42.22% Registers: 22.97% BRAMs: 51.43% DSPs: 10.91%

te04_l

te04_s

data_access_random - This is a simple example of int32 matrix multiplication
(Row x Col) C[32,32]= A[32,32]*B[32,32] to demonstrate random data access pattern.

2if: 0.57x 2if: 0.57x 120 MHz Slices: 65.63% Luts: 43.55% Registers: 25.34% BRAMs: 56.43% DSPs: 13.64%

1qf: 0.63x 1qf: 0.63x 120 MHz Slices: 64.33% Luts: 43.58% Registers: 25.35% BRAMs: 56.43% DSPs: 13.64%

14s: 0.63x 14s: 0.63x 120 MHz Slices: 64.60% Luts: 57.02% Registers: 33.19% BRAMs: 62.62% DSPs: 17.65%

1cfa: 1cfa: 120 MHz Slices: 65.34% Luts: 43.57% Registers: 25.35% BRAMs: 56.43% DSPs: 13.64%

te05_l

te05_s

dependence_inter - This is a simple example to demonstrate inter dependence
attribute. Using inter dependence attribute user can provide additional dependency
details to compiler which allow compiler to perform unrolling/pipelining to get better
performance.

2if: 5.84x 2if: 6.51x 150 MHz Slices: 58.66% Luts: 40.36% Registers: 22.57% BRAMs: 55.00% DSPs: 22.27%

1qf: 6.42x 1qf: 7.16x 150 MHz Slices: 59.05% Luts: 40.30% Registers: 22.80% BRAMs: 55.00% DSPs: 22.27%

14s: 6.60x 14s: 7.22x 150 MHz Slices: 58.81% Luts: 52.72% Registers: 29.85% BRAMs: 60.75% DSPs: 28.82%

1cfa: 1cfa: 150 MHz Slices: 60.74% Luts: 40.30% Registers: 22.80% BRAMs: 55.00% DSPs: 22.27%

te06_l

te06_s

direct_connect - This is a simple example of int32 matrix multiplication with matrix
addition (Out[32,32] = (A[32,32] * B[32,32]) + C[32,32]) to demonstrate direct
connection which helps to achieve increasing in system parallelism and concurrency.

2if: 8.61x 2if: 9.14x 150 MHz Slices: 75.00% Luts: 49.24% Registers: 29.73% BRAMs: 82.50% DSPs: 57.73%

1qf: 8.36x 1qf: 8.92x 120 MHz Slices: 72.65% Luts: 49.21% Registers: 29.73% BRAMs: 82.50% DSPs: 57.73%

14s: 9.55x 14s: 9.92x 150 MHz Slices: 74.31% Luts: 62.99% Registers: 40.41% BRAMs: 96.73% DSPs: 74.71%

1cfa: 1cfa: 120 MHz Slices: 73.46% Luts: 49.20% Registers: 29.73% BRAMs: 82.50% DSPs: 57.73%

te07_l te07_s dma_sg - This example demonstrates how to use Scatter-Gather DMAs for data transfer
to/from hardware accelerator.

2if: 2if: 150 MHz Slices: 73.83% Luts: 48.92% Registers: 29.41% BRAMs: 60.00% DSPs: 9.55%

1qf: 1qf: 120 MHz Slices: 72.84% Luts: 48.94% Registers: 29.41% BRAMs: 60.00% DSPs: 9.55%

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

27/75

http://zs.utia.cas.cz

14s: 14s: 150 MHz Slices: 74.14% Luts: 64.08% Registers: 38.59% BRAMs: 67.29% DSPs: 12.35%

1cfa: 1cfa: 120 MHz Slices: 74.60% Luts: 48.95% Registers: 29.41% BRAMs: 60.00% DSPs: 9.55%

te08_l te08_s dma_simple - This example demonstrates how to insert Simple DMAs for data transfer
between user program and hardware accelerator.

2if: 2if: 150 MHz Slices: 63.16% Luts: 43.06% Registers: 24.72% BRAMs: 56.43% DSPs: 9.55%

1qf: 1qf: 150 MHz Slices: 64.74% Luts: 43.07% Registers: 24.78% BRAMs: 56.43% DSPs: 9.55%

14s: 14s: 150 MHz Slices: 62.58% Luts: 56.34% Registers: 32.44% BRAMs: 62.62% DSPs: 12.35%

1cfa: 1cfa: 120 MHz Slices: 64.49% Luts: 43.07% Registers: 24.72% BRAMs: 56.43% DSPs: 9.55%

te09_l
(With Linux
SD file R/W
functions)

Not imple-
mented as
standalone

file_io_manr_sobel - Linux video processing application that reads input video from a
file and writes out the output video to a file. Video processing includes Motion Adaptive
Noise Reduction (MANR) followed by a Sobel filter for edge detection. You can run it by
supplying a 1080p YUV422 file as input with limiting number of frames to a maximum
of 20 frames.

2if: NA 120 MHz Slices: 75.92% Luts: 51.33% Registers: 30.58% BRAMs: 63.21% DSPs: 10.91%

1qf: NA 120 MHz Slices: 75.98% Luts: 51.32% Registers: 30.66% BRAMs: 63.21% DSPs: 10.91%

14s: NA 120 MHz Slices: 76.30% Luts: 67.15% Registers: 40.15% BRAMs: 71.50% DSPs: 12.62%

1cfa: NA 120 MHz Slices: 76.29% Luts: 51.31% Registers: 30.66% BRAMs: 63.21% DSPs: 10.91%

te10_l
(With Linux
SD file R/W
functions)

Not imple-
mented as
standalone

file_io_optical - Linux video processing application that reads input video from a file
and writes out the output video to a file. Video processing performs LK Dense Optical
Flow over two Full HD frames video file. You can run it by supplying a 1080p YUV422 file
route85_1920x1080.yuv as input.

2if: NA 120 MHz Slices: 99.50% Luts: 79.55% Registers: 51.34% BRAMs: 88.93% DSPs: 40.91%

1qf: NA 50 MHz Slices: 99.35% Luts: 79.58% Registers: 46.96% BRAMs: 88.93% DSPs: 40.91%

14s: NA SW impl. Slices: 43.88% Luts: 40.25% Registers: 19.66% BRAMs: 50.00% DSPs: 12.35%

1cfa: NA 100 MHz Slices: 98.62% Luts: 79.60% Registers: 50.90% BRAMs: 88.93% DSPs: 40.91%

te11_l te11_s full_array_2d - This is a simple example of accessing full data from 2D array.

2if: 2if: 150 MHz Slices: 60.20% Luts: 41.98% Registers: 23.00% BRAMs: 55.36% DSPs: 12.27%

1qf: 1qf: 150 MHz Slices: 59.52% Luts: 41.91% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27%

14s: 14s: 150 MHz Slices: 59.86% Luts: 54.84% Registers: 30.23% BRAMs: 61.21% DSPs: 15.88%

1cfa: 1cfa: 150 MHz Slices: 59.91% Luts: 41.92% Registers: 23.09% BRAMs: 55.36% DSPs: 12.27%

te12_l te12_s hello_vadd - This is a basic hello world kind of example which demonstrates how to
achieve vector addition using hardware function.

2if: 2if: 150 MHz Slices: 60.06% Luts: 41.46% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55%

1qf: 1qf: 150 MHz Slices: 58.95% Luts: 41.48% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55%

14s: 14s: 150 MHz Slices: 57.40% Luts: 54.29% Registers: 29.57% BRAMs: 58.41% DSPs: 12.35%

1cfa: 1cfa: 150 MHz Slices: 59.52% Luts: 41.50% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55%

te13_l te13_s lmem_2rw - This is a simple example of vector addition to demonstrate how to utilize
both ports of Local Memory.

2if: 2if: 150 MHz Slices: 61.30% Luts: 42.13% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55%

1qf: 1qf: 150 MHz Slices: 61.26% Luts: 42.14% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55%

14s: 14s: 150 MHz Slices: 59.48% Luts: 55.12% Registers: 30.13% BRAMs: 61.21% DSPs: 12.35%

1cfa: 1cfa: 150 MHz Slices: 62.19% Luts: 42.21% Registers: 23.02% BRAMs: 55.36% DSPs: 9.55%

te14_l te14_s loop_fusion - This example will demonstrate how to fuse two loops into one to improve
the performance of a C/C++ hardware function.

2if: 2if: 150 MHz Slices: 61.41% Luts: 42.73% Registers: 23.57% BRAMs: 53.21% DSPs: 15.00%

1qf: 1qf: 150 MHz Slices: 60.62% Luts: 42.72% Registers: 23.79% BRAMs: 53.21% DSPs: 15.00%

14s: 14s: 150 MHz Slices: 60.64% Luts: 55.86% Registers: 31.14% BRAMs: 58.41% DSPs: 19.41%

1cfa: 1cfa: 150 MHz Slices: 62.74% Luts: 42.71% Registers: 23.79% BRAMs: 53.21% DSPs: 15.00%

te15_l te15_s loop_perfect - This nearest neighbor example is to demonstrate how to achieve better
performance using perfect loop.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

28/75

http://zs.utia.cas.cz

2if: 2if: 150 MHz Slices: 75.26% Luts: 53.49% Registers: 29.28% BRAMs: 53.21% DSPs: 15.45%

1qf: 1qf: 150 MHz Slices: 73.72% Luts: 53.43% Registers: 29.51% BRAMs: 53.21% DSPs: 15.45%

14s: 14s: 150 MHz Slices: 74.11% Luts: 69.93% Registers: 38.63% BRAMs: 58.41% DSPs: 20.00%

1cfa: 1cfa: 150 MHz Slices: 74.62% Luts: 53.42% Registers: 29.51% BRAMs: 53.21% DSPs: 15.45%

te16_l te16_s loop_pipeline - This example demonstrates how loop pipelining can be used to improve
the performance of a hardware function.

2if: 2if: 150 MHz Slices: 60.06% Luts: 41.46% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55%

1qf: 1qf: 150 MHz Slices: 58.95% Luts: 41.48% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55%

14s: 14s: 150 MHz Slices: 57.40% Luts: 54.29% Registers: 29.57% BRAMs: 58.41% DSPs: 12.35%

1cfa: 1cfa: 150 MHz Slices: 59.52% Luts: 41.50% Registers: 22.59% BRAMs: 53.21% DSPs: 9.55%

te17_l

te17_s

loop_reorder - This is a simple example of matrix multiplication (Row x Col) to
demonstrate how to achieve better pipeline II factor by loop reordering. It performs
int32 matrix multiplication C[32,32] = A[32,32] * B[32,32]

2if: 4.27x 2if: 7.12x 150 MHz Slices: 68.44% Luts: 45.64% Registers: 26.45% BRAMs: 76.79% DSPs: 56.36%

1qf: 4.66x 1qf: 7.72x 150 MHz Slices: 67.90% Luts: 44.64% Registers: 27.53% BRAMs: 76.79% DSPs: 56.36%

14s: 4.92x 14s: 7.85x 150 MHz Slices: 66.91% Luts: 58.41% Registers: 36.04% BRAMs: 89.25% DSPs: 72.94%

1cfa: 1cfa: 150 MHz Slices: 67.88% Luts: 44.65% Registers: 27.53% BRAMs: 76.79% DSPs: 56.36%

te18_l te18_s shift_register - This example demonstrates how to shift values in each clock cycle.

2if: 1.96x 2if: 4.19x 150 MHz Slices: 63.03% Luts: 42.68% Registers: 24.19% BRAMs: 53.21% DSPs: 24.55%

1qf: 2.02x 1qf: 4.54x 150 MHz Slices: 62.23% Luts: 42.40% Registers: 24.52% BRAMs: 53.21% DSPs: 24.55%

14s: 2.10x 14s: 4.52x 150 MHz Slices: 61.28% Luts: 55.41% Registers: 32.10% BRAMs: 58.41% DSPs: 31.76%

1cfa: 1cfa: 150 MHz Slices: 62.87% Luts: 42.41% Registers: 24.52% BRAMs: 53.21% DSPs: 24.55%

te19_l te19_s sys_port - This is a simple example which demonstrates sys_port usage.

2if: 2if: 120 MHz Slices: 83.92% Luts: 54.55% Registers: 34.77% BRAMs: 65.00% DSPs: 9.55%

1qf: 1qf: 120 MHz Slices: 80.92% Luts: 54.53% Registers: 34.77% BRAMs: 65.00% DSPs: 9.55%

14s: 14s: 120 MHz Slices: 81.75% Luts: 71.42% Registers: 45.53% BRAMs: 73.86% DSPs: 12.35%

1cfa: 1cfa: 120 MHz Slices: 84.68% Luts: 54.56% Registers: 34.77% BRAMs: 65.00% DSPs: 9.55%

te20_l te20_s systolic_array - Matrix multiplication implemented as systolic array.

2if: 0.066x 2if: 0.162x 150 MHz Slices: 68.55% Luts: 47.36% Registers: 26.67% BRAMs: 53.21% DSPs: 61.36%

1qf: 0.077x 1qf: 0.177x 150 MHz Slices: 66.75% Luts: 46.26% Registers: 27.82% BRAMs: 53.21% DSPs: 61.36%

14s: 0.068x 14s: 0.198x 150 MHz Slices: 67.15% Luts: 60.51% Registers: 36.42% BRAMs: 58.41% DSPs: 79.41%

1cfa: 1cfa: 150 MHz Slices: 70.08% Luts: 46.29% Registers: 27.82% BRAMs: 53.21% DSPs: 61.36%

te21_l te21_s wide_memory_rw - Wide memory read write 64 bit wide.

2if: 2if: 150 MHz Slices: 60.07% Luts: 39.74% Registers: 23.34% BRAMs: 55.36% DSPs: 9.55%

1qf: 1qf: 150 MHz Slices: 59.34% Luts: 39.77% Registers: 23.34% BRAMs: 55.36% DSPs: 9.55%

14s: 14s: 150 MHz Slices: 58.41% Luts: 52.05% Registers: 30.55% BRAMs: 61.21% DSPs: 12.35%

1cfa: 1cfa: 150 MHz Slices: 59.59% Luts: 39.78% Registers: 23.34% BRAMs: 55.36% DSPs: 9.55%

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

29/75

http://zs.utia.cas.cz

Installation and use of the Release Evaluation Package – standalone examples

In case of standalone target:

(1) In Win 7 or Win 10 (32bit or 64bit PC), unzip the basic evaluation package

TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL.zip
to directory of your choice. We will use:
c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\

(2) Select one of the examples (t01_s … t21_s) and copy the content of sd_card directory to the SD card.
Example: Copy BOOT.bin from
c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release
\te01_s\Release\sd_card\BOOT.bin
to the root of the SD card as single file.

(3) Connect USB cable from J7 connector to the PC. It will serve as ARM terminal and JTAG line.

(4) Connect another USB cable to the USBUART pmod module present in the J5 connector to the PC. It will
serve as MicroBlaze terminal.

(5) Power ON the carrier board and open putty (or similar) terminal client for both USB serial lines. Set the
serial communication to: [speed 115200, data bits 8, stop bits 1, parity none and flow control None] in
both cases.

(6) Insert SD card to the TE0706-02 or TE0703-05 carrier board.

(7) Reset the carrier board (S2 button).

- The standalone system will start. See
Figure 8.
- The ARM terminal will present output from the t01_s example.
- The MicroBlaze terminal will present output from the 8xSIMD EdkDSP IP. See Figure 8.

(8) In PC, open the Vivado Lab tool 2017.4.1 See Figure 9.

Open Hardware Manager
Press Auto Connect icon in Hardware window
- Open description of debug nets present in file, thus specifying the probes file as:
c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release
\te01_s\Release\debug_nets.ltx
- Set the ILA trigger conditions and observe process of computation in the 8xSIMD EdkDSP IP.
 See Figure 10, Figure 11, Figure 12.
- Open new perspective and observe the chip temperature. See Figure 13.

(9) Close Vivado Lab 2017.4.1 tool project.

(10) Remove SD card and reprogram it in PC to test another example.

(11) Go to step (6).

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

30/75

http://zs.utia.cas.cz

Figure 8: Release demo t01_s. ARM and 8xSIMD EdkDSP terminal output.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

31/75

http://zs.utia.cas.cz

Figure 9: Release demo t01_s. Vivado Lab Tool is open.

The Vivado Lab tool is connected to the chip. You have to specify the probes file (See Figure 10).

c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release\te01
_s\Release\debug_nets.ltx

Names and parameters of probes are added to the ILA Waveform window. See Figure 10.

Use + to select probes used for triggering, and select the condition for the trigger for each probe and their
combinations (use AND as default).

Some of debug probes can be used to trigger the capturing of data. The ILA can be triggered from the EdkDSP
firmware running on the PicoBlaze6 running inside of the (8xSIMD) EdkDSP unit.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

32/75

http://zs.utia.cas.cz

Figure 10: Release demo t01_s. Probes file is specified. Trigger conditions are set.

In Xilinx SDK 2017.4.1, open the EdkDSP C soure file:
c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SDK_Workspace\e
dkdsp\a\f2.c

See section of the LMS C code firmware. This C code includes the additional call to the pb2dfu_set() function
used for selective triggering of the ILA scope in specified point of computation of the EdkDSP accelerator.

 …

pb2dfu_set(0x20, 0); // trigger (0x00 on port 0x20) for the ILA
 for (i = 0; i < 4; i++) {
 for (j = 2; j <= 3; j++) {
 lms(j, n, op);
 pb2mb_eoc(led);
 }
 }
 …

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

33/75

http://zs.utia.cas.cz

Figure 11: Release demo t01_s. Details of the 8xSIMD EdkDSP LMS filter computation.

In Vivado Lab Tool 2017.4.1, in the ILA configuration page, change the trigger condition to:
(bce_port_wr ==1) AND (probe10[0:7] ==0x20) AND (probe9[0:7] ==0x00).
(bce_port_wr ==1) AND (bce_port_id[0:7]==0x20) AND (bce_port[0:7]==0x00).
Selecion on the first line corresponds to the System ILA input to the EdkDSP probes on the second line.
See connecrions of EdkDSP and Systen ILA on Figure 3.

In Vivado Lab Edition 2017.4.1, arm the System ILA core by pressing Run Trigger button in Hardware window.
Armed System ILA core will wait until the recompiled EdkDSP firmware comes to the point, where PicoBlaze6
calls function pb2dfu_set(0x20, 0).

In case of TE0720-03-2IF, ILA captures 8K samples of all debug probes at 120 MHz.
In case of TE0720-03-1QF, ILA captures 8K samples of all debug probes at 100 MHz.
In case of TE0720-03-14S-1C, ILA captures 2K samples of all debug probes at 100 MHz.

Data are captured and sent via jtag USB connection in Vivado Lab Edition 2017.4.1 for visualisation and analysis
in the waveform window. This snapshot stores the detailed trace of the FIR filter computation. See Figure 12.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

34/75

http://zs.utia.cas.cz

Figure 12: Release demo t01_s. Details of the 8xSIMD EdkDSP FIR filter computation.

In Vivado Lab. Tool, in the ILA configuration page, change the trigger condition to (probe9[0:7]==0x01).
This corresponds to the condition bce_port[0:7]==0x01. See connections in Figure 3. ILA will capture start
of the FIR filter. See Figure 12. The PicoBlaze C code of the FIR example is listed in Figure 19.

The Vivado Lab. screens presented in Figure 11 and Figure 12 display also the 1024 samples before the trigger
event. This mode is set in the trigger mode settings window. Screens display how the PicoBlaze6 controller reset
signal bce_r_pb is deactivated. Picoblaze6 reads the 8 bit parameters op and n from the MicroBlaze before the
trigger evet. See complete program listing in Figure 19 with these initial lines of the PicoBlaze6 SW:

…
pb2dfu_set(0x20, 1); // trigger (0x01 on port 0x20) for the ILA

 for (i = 0; i < 4; i++) {
 for (j = 2; j <= 3; j++) {
 fir(j, n, op);
 pb2mb_eoc(led);
 }
 }
 …

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

35/75

http://zs.utia.cas.cz

Figure 13: Release demo t01_s. Standalone demo supports measurements of the chip temperature.

The standalone demos support measurement of the chip temperature in a new dashboard connected to the
XADC system monitor.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

36/75

http://zs.utia.cas.cz

Installation and use of Release Evaluation Package – Linux examples

In case of Linux target:

(1) In Win 7 or Win 10 (32bit or 64bit PC), unzip the basic evaluation package
TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL.zip
to directory of your choice. We will use:
c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\

(2) Select one of the examples (t01_l … t21_l) and copy the content of sd_card directory to the SD card.
Example. Copy the content (and the subdirectory with its content) from the directory:
c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release
\te01_l\Release\sd_card\
to the root of the SD card.

(3) Connect Mini USB cable from J7 connector to the PC. It will serve as ARM terminal and JTAG line.

(4) Connect Micro USB cable from to the USBUART pmod module present in the J5 connector) to the PC. It
will serve as MicroBlaze terminal.

(5) Power ON the carrier board. And open putty (or similar) terminal client for both USB serial lines.
Set the serial communication to:
[speed 115200, data bits 8, stop bits 1, parity none and flow control None] in both cases.

(6) Insert SD card to the TE0706-02 or TE0703-05 carrier board.

(7) Reset the carrier board.

- The Linux system will start. See Figure 14.
 type user name:
 root
 type password:
 root
- Mount SD card to the directory (See Figure 15) /mnt by typing:
 mount /dev/mmcblk0p1 /mnt
- Change directory (See Figure 15) to /mnt
 cd /mnt
-Compile firmware for the PicoBlaze6 by the EdkDSP C compiler (See Figure 15):
 ./edkdsp/tools/cc_fx.sh ./edkdsp/a
 or ./edkdsp/tools/cc_fx.sh ./edkdsp/b or ./edkdsp/tools/cc_fx.sh ./edkdsp/c
- The PicoBlaze6 C source code f0.c f1.c f2.c and f3.c from the directory ./edkdsp/a
 are compiled by the EdkDSP C compiler to the firmware files (See Figure 15):
 ./f0.dec ./f1.dec ./f2.dec ./f3.dec
- The ARM terminal will present output from the EdkDSP C compiler
- The MicroBlaze terminal is not active. EdkDSP is not programmed yet.
- Start the Linux user space application by typing:
./t01_l.elf
- The ARM terminal will present output from the t01_l.elf example. See Figure 16.
- The MicroBlaze terminal will present output from the 8xSIMD EdkDSP IP
 working with new firmware programs as re-compiled by the EdkDSP C compiler
 from the C source code files: f0.c f1.c f2.c and f3.c
 from the directory ./edkdsp/a

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

37/75

http://zs.utia.cas.cz

The output from the 8xSIMD EdkDSP is identical to the standalone output. See Figure 8.

(8) In PC, open the Vivado Lab tool. See Figure 9.
 Open Vivado Lab tools 2017.4.1 hardware manager.

- Press Auto Connect icon in Hardware window
- Open description of debug nets present in file, thus specifying the probes file. See Figure 10.
c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release
\te01_l\Release\debug_nets.ltx
- Set the ILA trigger conditions and observe process of computation in the 8xSIMD EdkDSP IP.
 See Figure 11, Figure 12.

(9) Close Vivado Lab tool project.

(10) Remove SD card and reprogram it in PC to test another example.

(11) Go to step (6).

Figure 14: Release demo t01_l. Linux start.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

38/75

http://zs.utia.cas.cz

Figure 15: Release demo t01_l; Login, Compilation of firmware in the EdkDSP C Compiler.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

39/75

http://zs.utia.cas.cz

Figure 16: Release demo t01_l; Program and start 8xSIMD EdkDSP demo.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

40/75

http://zs.utia.cas.cz

9. Installation and Use of Debug Evaluation Package

The debug evaluation package is offered to the ECSEL PRODUCTIVE 4.0 project partners [8] on their written
request to UTIA for free. See the license conditions listed in next sections of this report.

The debug evaluation package supports:

 Compilation from C source code and debug for the MicroBlaze processor for Linux and standalone
targets

 Creation and Release of SD cards with new compiled MicroBlaze SW and new compiled Picoblaze6
firmware for Linux and standalone targets.

 In-circuit Logic Analyser (ILA) JTAG based inspection/observation/debug of the 8xSIMD EdkDSP IP.
o In case of TE0720-03-2IF, ILA captures 8K samples of debug probes at 120 MHz.
o In case of TE0720-03-1QF, ILA captures 8K samples of debug probes at 100 MHz.
o In case of TE0720-03-14S-1C, ILA captures 2K samples of debug probes at 100 MHz.

 Embedded Compilation from a C/ASM source code to firmware for the reprogrammable PicoBlaze6
finite state machine (FSM) scheduling inside of the 8xSIMD EdkDSP IP core the floating point
computation sequences performed in the 8xSIMD data flow unit (DFU).
This embedded compilation is supported for the Linux examples.

 The standalone examples also support ILA and additionally can display the on-chip temperature via
JTAG.

 The extended evaluation package requires the Xilinx SDK 2017.4.1 tools (download is free).
SDK serves for compilation of MicroBlaze code, download of compiled MicroBlaze code via JTAG and for
the debug of this code in parallel with the ILA inspection/observation/debug of the EdkDSP IP core.

 The In-circuit Logic Analyser (ILA) JTAG based inspection/observation/debug can be performed from the
free Xilinx Lab Vivado 2017.4.1 tool installed on Win7 (64bit) or Win 10 (64bit) PC.

 The Linux target examples support 1G Bit Ethernet, SSH telnet and file system management tools like
the Total Commander for an Ethernet based access from PC to the SD card files and editing of these files
from user PC.

The extended evaluation package provides 21 precompiled designs for the Linux target and 19 precompiled
designs for the standalone target as described in Table 12 .

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

41/75

http://zs.utia.cas.cz

Installation and use of debug evaluation package – standalone examples

In case of standalone target:

(1) In Win 7 or Win 10 (64 bit PC), unzip the debug evaluation package:

TE0720_EdkDSP_2if_te706_ila8k_Debug_INSTALL.zip
 to directory of your choice. We will use:
 c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_INSTALL\

In Xilinx SDK 2017.4.1 create a new workspace in the directory of your choice. We will use:
c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_SDK_Workspace\

Figure 17: Create new SDK 2017.4.1 workspace.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

42/75

http://zs.utia.cas.cz

Figure 18: Import the extended debug evaluation package projects into the SDK Workspace.

 Import (with copy) all SDK projects from:

c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_INSTALL\SDSoC_PFM\2if\SDK_Workspace\
to the new SDK workspace.
c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_SDK_Workspace\

 Both Microblaze projects will be compiled automatically by the SDK for the debug configuration.

(2) Select one of the examples (t01_s … t21_s) and copy the content of the sd_card directory to the SD

card. Example: Copy BOOT.bin to the root of the SD card from:
c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_INSTALL\SDSoC_PFM\2if\SD_debug\te01_
s\Release\sd_card\BOOT.bin

(3) Connect Mini USB cable from J7 connector to the PC. It will serve as ARM terminal and JTAG line.

(4) Connect Micro USB cable to the USBUART pmod module present in the J5 connector to the PC. It will serve
as MicroBlaze terminal.

(5) Power ON the carrier board. And open putty (or similar) terminal client for both USB serial lines.
Set the serial communication to [speed 115200, data bits 8, stop bits 1, parity none and flow control None]
in both cases.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

43/75

http://zs.utia.cas.cz

Figure 19: SDK compiles MicroBlaze SW projects for the standalone debug target.

(6) Insert SD card to the TE0706-02 or TE0703-05 carrier board.

(7) Reset the carrier board.

- The standalone system will start.
- The ARM terminal will present output from the t01_s example.
- The Arm application is waiting for the MicroBlaze.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

44/75

http://zs.utia.cas.cz

Figure 20: Debug demo t01_l; Execution of the ./t01_s.elf example from the SD card.
- The Xilinx SDK project
 c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_SDK_Workspace\edkdsp_fp12_1x8_s
 includes PicoBlaze6 firmware header files fill_f0_program_store.h,
 fill_f1_program_store.h, fill_f2_program_store.h and fill_f3_program_store.h
 Note: These files can be recompiled from the C source code by the EdkDSP C compiler in the
 Linux target session as described in the next section).
- In the Xilinx SDK workspace, compile the edkdsp_fp12_1x8_s project with the existing (or new,
 recompiled) PicoBlaze6 firmware headers fill_f0_program_store.h,
 fill_f1_program_store.h, fill_f2_program_store.h and fill_f3_program_store.h.
- In the Xilinx SDK workspace, select Debug of MicroBlaze project edkdsp_fp12_1x8_s. In the Debug
 Configurations, select “No reset”, unselect “Run ps7_init”, unselect “Run ps7_post_config” click “Apply”.

Figure 21: Debug demo t01_s; Open project edkdsp_fp12_1x8_s for debug.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

45/75

http://zs.utia.cas.cz

Figure 22: Debug demo t01_s; Start the free-run from the debugger.

- In the SDK debugger, step through the MicroBlaze source code, inspect content of variables, set the
 breakpoints, step through the code and finally select the free run of the MicroBlaze code.
- At this stage, the ARM terminal will present the output from the ARM t01_s.elf example. See Figure 23.

Figure 23: Debug demo t01_s. Arm started EdkDSP and runs SDSoC akcelerátor demo.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

46/75

http://zs.utia.cas.cz

The MicroBlaze terminal will present output from the debugged MicroBlaze and the 8xSIMD
EdkDSP IP core. See Figure 24.

Figure 24: Debug demo t01_s; MicroBlaze project output (Compiled for Debug).

(8) In PC, open the Vivado Lab tool. See Figure 9.
 - Open Hardware Manager.
 - Press Auto Connect icon in Hardware window to connect to the board via JTAG line.
 - Open description of debug nets present in file, thus specifying the probes file as:
 c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_INSTALL\SDSoC_PFM\2if\SD_debug\
 te01_s\Release\debug_nets.ltx
- Set the ILA trigger conditions and observe process of computation in the 8xSIMD EdkDSP IP.
 See Figure 10, Figure 11, Figure 12.
- Open new perspective and observe the chip temperature. See Figure 13. Close Vivado Lab tool project.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

47/75

http://zs.utia.cas.cz

(9) In SDK debugger, stop MicroBlaze processor and close the debug session.
(10) Remove SD card and reprogram it in the PC to test another example.
(11) Go to step (6).

Installation and use of Debug Evaluation Package – Linux examples

(1) In Win 7 or Win 10 (64bit PC), unzip the basic evaluation package

TE0720_EdkDSP_2if_te706_ila8k_Debug_INSTALL.zip
 to directory of your choice. We will use:
c:\TS74\TE0720_EdkDSP_14s_te706_ila2k_Debug_INSTALL\
Open new Xilinx SDK 2017.4.1 workspace in the directory
c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug\SDK_Workspace\
Import (with copy) all SDK projects from
c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_INSTALL\SDSoC_PFM\2if\SDK_Workspace\
to the new SDK.

(2) Select one of the examples (t01_l … t21_l) and copy the content of sd_card directory to the SD card.
Example. Copy content of the directory from
c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_INSTALL\SDSoC_PFM\2if\SD_debug\
te01_l\Release\sd_card\
to the root of the SD card/

(3) Connect USB cable from J7 connector to the PC. It will serve as ARM terminal and JTAG line.

(4) Connect USB cable to the USBUART pmod module present in the J5 connector to the PC. It will serve as
MicroBlaze terminal.

(5) Power ON the carrier board. And open putty (or similar) terminal client for both USB serial lines.
Set the serial communication to [speed 115200, data bits 8, stop bits 1, parity none and flow control None]
in both cases.

(6) Insert SD card to the TE0706-02 or TE0703-05 carrier board.

(7) Reset the carrier board.
- The Linux system will start. See Figure 25.
- Type the Linux user name and password:
 root
 root

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

48/75

http://zs.utia.cas.cz

Figure 25: Compiled EdkDSP firmware. Started debug demo - Linux target t01_l.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

49/75

http://zs.utia.cas.cz

- Mount SD card to the directory (See Figure 25) /mnt by typing:
 mount /dev/mmcblk0p1 /mnt
- Change directory to /mnt
 cd /mnt
- Compile firmware for the PicoBlaze6 by the EdkDSP C compiler (see Figure 25) :
 ./edkdsp/tools/cc_fx.sh ./edkdsp/a
- The PicoBlaze6 C source code files from the directory ./edkdsp/a
 ./edkdsp/a/f0.c ./edkdsp/a/f1.c ./edkdsp/a/f2.c ./edkdsp/a/f3.c
 are compiled by the EdkDSP C compiler to the firmware files:
 ./f0.dec ./f1.dec ./f2.dec ./f3.dec
- Optionally, you can also compile the PicoBlaze6 firmware into header files for the
 standalone target. Compile firmware for the PicoBlaze6 by the EdkDSP C compiler. (See Figure 25):
 ./edkdsp/tools/cs_fx.sh ./edkdsp/a
 Generated header files with PicoBlaze6 firmware for the standalone target EdkDSP IP target are created
 and stored in the SD card root directory:
 ./fill_f0_program_store.h ./fill_f1_program_store.h
 ./fill_f2_program_store.h ./fill_f3_program_store.h
 These headers serve for the standalone MicroBlaze projects. Headers are compiled directly into the
 debugged MicroBlaze standalone application as described above.
- Execute the ARM Linux application See Figure 25.
- The ARM terminal will present output from the EdkDSP C compiler
- The MicroBlaze terminal will present output from the 8xSIMD EdkDSP IP
- Start the Linux application by typing ./t01_l.elf
- The ARM terminal will present output from the t01_l.elf example. The Arm application is waiting for
 the MicroBlaze in this stage.
- In the Xilinx SDK environment on the PC, select debug project (See Figure 26):
 c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_SDK_Workspace\edkdsp_fp12_1x8_l

Figure 26: Select MicroBlaze project edkdsp_fp12_1x8_l for debug.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

50/75

http://zs.utia.cas.cz

- In the SDK debugger, step through the MicroBlaze source code, inspect the content of variables, set
 breakpoints etc. See Figure 27.
- In the SDK debugger, select free run of the MicroBlaze code. See Figure 27.
- The MicroBlaze terminal will present output from the 8xSIMD EdkDSP IP working with new
 firmware programs as re-compiled by the EdkDSP C compiler from the C source code files:
 ./edkdsp/a/f0.c, ./edkdsp/a/f1.c, ./edkdsp/a/f2.c and ./edkdsp/a/f3.c
 The terminal Output is identical to Figure 24.
- The ARM terminal will continue to present output from the t01_l.elf example. See Figure 28.
- In ARM terminal, type:
 ls -lr
 to see listing of files compiled by the EdkDSP C compiler. See Figure 28.
 The compiled header files fill_f0_program_store.h, fill_f1_program_store.h,
 fill_f2_program_store.h, and fill_f3_program_store.h can be used as new source code for
 the standalone MicroBlaze project
 c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_SDK_Workspace\edkdsp_fp12_1x8_s

Figure 27: Select free run of MicroBlaze project edkdsp_fp12_1x8_l.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

51/75

http://zs.utia.cas.cz

(8) In PC, open the Vivado Lab tool hardware manager. See Figure 9.
- Press Auto Connect icon in Hardware window to connect to the board via JTAG line
- Open description of debug nets present in file, thus specifying the probes file
- Open description of debug nets present in file
 c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_INSTALL\SDSoC_PFM\2if\SD_debug\te01_s\
 Release\debug_nets.ltx
- Set the ILA trigger conditions. See Figure 10, Figure 11, Figure 12. Close Vivado Lab tool project.
(9) In SDK debugger, stop MicroBlaze processor and close the debug session
(10) Exit from Linux by typing on the ARM terminal: exit
(11) Remove SD card and reprogram it in the PC to test another example.
(12) Go to step (6).

Figure 28: Output from ARM MicroBlaze fort t01_l. Compiled EdkDSP firmware.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

52/75

http://zs.utia.cas.cz

Updating of the release SD card images for new standalone-release-target

Modified Picoblaze6 C source code can be compiled to firmware headers in the embedded EdkDSP C compiler
(Linux target). Resulting headers can be included in the SDK MicroBlaze standalone release target project. See
Figure 19. The standalone-release-target SD card image can be updated by re-compilation of the (possibly
modified) C source code for the MicroBlaze in the SDK project with included updated PicoBlaze firmware header
files. See Figure 29.

Figure 29: Create BOOT.bin for the t01_s demo.

See the content of directory:
c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release\te01
_s\Release\uboot\
The new BOOT.bin image can be created from these five files:
t01_s.bif, zynq_fsbl.elf, zynq_wrapper.bit.elf, t01_s.elf, edkdsp_fp12_1x8_s.elf
Replace an old edkdsp_fp12_1x8_s.elf file with the new file recompiled in the SDK (with new PicoBlaze6
firmware headers) from the SDK project:
c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_SDK_Workspace\edkdsp_fp12_1x8_s
Use the BOOT.bin generation utility (In the SDK workspace: Xilinx Tools -> Create Boot Image) and create the
new BOOT.bin file (See Figure 29):
c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release\te01
_s\Release\uboot\BOOT.bin
Copy this new BOOT.bin file it to:
c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release\te01
_s\Release\sd_card\BOOT.bin
The content of the standalone-release-target SD card is updated with new MicroBlaze and PicoBlaze6 firmware.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

53/75

http://zs.utia.cas.cz

Updating of the release SD card images for new Linux-release-target

The Linux-release-target SD card image can be updated by re-compilation of the (possibly modified) C source
code for the MicroBlaze in the SDK project. See Figure 30.

Figure 30: Create BOOT.bin for the t01_l demo.

Use the content of directory:
c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release\te01
_l\Release\uboot\ The new BOOT.bin image can be created from these files:
te_l.bif, zynq_fsbl.elf, zynq_wrapper.bit.elf, u-boot.elf, edkdsp_fp12_1x8_l.elf

Replace:
c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release\te01
_l\Release\uboot\edkdsp_fp12_1x8_l.elf
with a new file recompiled in the SDK project:
c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Debug_SDK_Workspace\edkdsp_fp12_1x8_l
Use the BOOT.bin generation utility of the SDK and create the new BOOT.bin file:
c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release\te01
_l\Release\uboot\BOOT.bin

Copy this new BOOT.bin file to:
c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release\te01
_l\Release\sd_card\BOOT.bin

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

54/75

http://zs.utia.cas.cz

Copy modified f0.c, f1.c f2.c and f3.c to the directory:
c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release\
te01_l\Release\sd_card\edkdsp\a\
Copy compiled f0.dec, f1.dec f2.dec and f3.dec to the directory:
c:\TS74\TE0720_EdkDSP_2if_te706_ila8k_Release_INSTALL\SDSoC_PFM\2if\SD_release\
te01_l\Release\sd_card\

The content of the Linux-release-target SD card is updated with new MicroBlaze and PicoBlaze6 firmware and
stored in the PC.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

55/75

http://zs.utia.cas.cz

10. Installation of Arrowhead Framework Support

This chapter describes an installation procedure of Arrowhead client on Zynq 7000 device with
support for the Xilinx SDSoC 2017.4 HW accelerators. The Zynq device runs Xilinx PetaLinux
2017.4. kernel with Debian 9.8 Stretch distribution (03.25.2019). The client SW acts as a Producer of
a service or as a Consumer requesting the service from an Arrowhead framework. The base
hardware platform for the Zynq device is compiled with Xilinx Vivado 2017.4 tool. The entire
installation procedure has been tested on Win 7 Pro and Win 10 PC. To run and test Arrowhead
clients, it is required to have running Arrowhead-framework G4.0 light-weight installation running on
a RaspberryPi 3B board (RPi3).

HW configuration with simple arrowhead client example
The targeted HW works with one RPi3 board (bottom) and two Zynq boards (above). The RPi3
implements the Arrowhead framework. See [2] for the documentation. The Producer Zynq on the top
board hosts C++ provider capable to measure the actual temperature of the Xilinx XC77010-1C
device. The Consumer Zynq in the middle hosts C++ consumer capable to ask the Arrowhead
framework about the temperature provided as service by the Producer Zynq board. Zynq boards
host HW accelerators of Matrix MultiplyAdd (20x20 int32 matrices), delivering approximately 4x
shorter execution time in comparison to the optimized SW running on the 650 MHz Arm Cortex A9
processor.

Figure 31: Zynq module (TE0720-14S on TE0706-02 carrier) with Debian an AH 4.0 Client

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

56/75

http://zs.utia.cas.cz

Installation of arrowhead framework services on RPi3
Testing and running of the Arrowhead C++ clients on Zynq board requires Ethernet access to the
Arrowhead framework services. It is recommended to use the precompiled image for the RPi3
board. It includes already installed and configured Arrowhead framework G4.0 lightweight
implementation. The image is available as one of results of the work package WP1 of the running
ECSEL JU project Productive4.0 https://productive40.eu/.

It is accessible for all consortium project partners from the project ownCloud repository
https://productive4-cloud.automotive.oth-aw.de/index.php/login . Files are present in section WP1,
task 1.4. Please contact coordinator of the consortium for further information about the access to the
Arrowhead-framework G4.0 light-weight installation running on the RPi3 board. After receiving the
access to the download, unzip the three downloaded files Arrowhead-40-raspi.z01, Arrowhead-40-
raspi.z02 and Arrowhead-40-raspi.zip into the final image file image_180626.img (size
3.711.959.040 Bytes).

Copy the RPi3 image image_180626.img to (at least) 4GB SD card (speed grade 10). You can use
the Win32DiskImager utility from: https://sourceforge.net/projects/win32diskimager/ .

Connect the RPi3 to USB keyboard, HDMI monitor with inserted SD card. Connect it to Ethernet
with the DHCP server. Power ON the board by connecting the 5V power supply via micro USB
cable. Power can be provided from the PC via the USB port or, preferably, from the dedicated 5V
power supply.

Figure 32: The RaspberryPi 3 will boot from the SD card image with text output to the HDMI monitor.

https://productive40.eu/
https://productive4-cloud.automotive.oth-aw.de/index.php/login
https://sourceforge.net/projects/win32diskimager/

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

57/75

http://zs.utia.cas.cz

Login as user:

pi

Password:

raspberry

Find and write down the assigned Ethernet IP address for IP V4 and IP V6 by typing on the RPi3
keyboard:

ifconfig

To shutdown properly the RPi3 type on the RPi3 keyboard:

sudo halt

The OS will shutdown and all possibly open R/W operations to the SD card are closed. Remove
temporarily the SD card and disconnect the 5V power to switch OFF the board. Return the SD card
to RPi3 slot.

Install Debian immage on SD card for the Zynq board

1. Unzip the preconfigured and precompiled Debian image for the Zynq board from from this
evaluation package file: te0720-debian.zip to the file te0720-debian.img (8GB).

2. Use again the Win32DiskImager tool for creation of the image te0720-debian.img on the SD
card. Use 8GB SD with speed grade 10.

3. Copy to the patrtition visible from Win7 or Win10 (fat32 partition of the immage) card the
selected set of files with one of precompiled HW accelerated demos for the SDSoC accelerator
and precompiled firmware files and compiler tools for the 8x SIMD EdkDSP accelerator demo
as described in the first part of this application note.

4. Insert created SD card to the SD slot of the carrier of the Zynq module.

5. Connect the Zynq board with your Win7 or Win 10 PC via two micro USB cable.

6. Use putty or similar terminal client with speed (baud) 115200bps, data bits 8, stop bits 1, parity
none and flow control none.

7. The actual COM port number associated with your connection can be found in the windows
Device manager.

Install Arrowhead-f support on zynq
At this stage, the Debian OS present on both Zynq board can be upgraded to become compatible with
the Arrowhead framework G4.0 client and provider C++ demo applications.

1. Start Ethernet connected RPi3 board, Zynq board and the Win7 or Win 10 PC.

2. Identify and write down the Ethernet addresses set by the HDCP server. The network has to
support access to the external Ethernet to get access to the needed SW repositories.

In Win7 or Win 10 PC use WinSCP or similar tool to copy the arrowhead installation script
install-arrohead-cli-dep.sh from this evaluation package to the /root folder of the Zynq board:

/root/install-arrohead-cli-dep.sh

3. To control the Zynq board, use SSH (preferred) or serial terminal of your Win7 or Win 10 PC.
Log in as: user root pswd root

4. To upgrade the Debian installations on the Zynq SD card image and to install the dependencies
required by the Arrowhead framework compatible C++ clients, execute on the Zynq board these
commands:

cd /root

chmod ugo+x install-arrohead-cli-dep.sh

./install-arrohead-cli-dep.sh

Install arrowhead-f C++ provider on Zynq
To control the Zynq device, use SSH (preferred) or serial terminal.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

58/75

http://zs.utia.cas.cz

1. Get the Arrowhead client source code. The sources include C++ version of the Arrowhead
Provider and Client skeletons.

cd /root

git clone https://github.com/arrowhead-f/client-cpp

2. Compile Arrowhead ProviderExample.

cd client-cpp/ProviderExample

make

3. Modify the ProviderExample configuration file ApplicationServiceInterface.ini

mcedit ApplicationServiceInterface.ini

The configuration file consists of the following items.

 sr_base_uri – an address of the Arrowhead registration service running in insecure

mode, in our case it is the RPi3 IP address with port 8440.

 sr_base_uri_https – an address of the Arrowhead registration service running in secure

mode, in our case it is the RPi3 IP address with port 8441.

 port – a port number where the Provider will be available on, set 8000.

 address – Provider IP address, Zynq IP.

 Address6 - Provider IP address in IPV6

The ProviderExample configuration file example:

[Server]

sr_base_uri="http://10.42.0.141:8440/serviceregistry/"

sr_base_uri_https="https://10.42.0.141:8441/serviceregistry/"

port="8000"

address="10.42.0.103"

address6="[fe80::483b:e5ff:fe7f:610d]"

Safe the file (F2) and exit the editor (F10).

4. Start the ProviderExample

./ProviderExample

The ProvidedExample registers itself in the Arrowhead framework database. On Consumer
request, it returns an artificial temperature, fixed to value 26 degrees Celsius.

Install arrowhead-f C++ consumer on Zynq
The Arrowhead ConsumerExample can be compiled and run on the same Zynq board.

1. Compile Arrowhead ConsumerExample.

cd /root/client-cpp/ConsumerExample

make

2. Configure the ConsumerExample. There are two configuration files: OrchestratorInterface.ini
and consumedServices.json.

a. OrchestratorInterface.ini

mcedit OrchestratorInterface.ini

The configuration file consists of the following items.

 or_base_uri – an address of the Arrowhead orchestrator service running in

insecure mode, in our case it is the RPi3 IP address with port 8440.

 sr_base_uri_https – an address of the Arrowhead orchestrator service running in

secure mode, in our case it is the RPi3 IP address with port 8441.

 port – a port number where the Consumer will be available on, set 8002.

 address – Consumer IP address, Zynq IP.

 address6 - Consumer IP address in IPV6

https://github.com/arrowhead-f/client-cpp

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

59/75

http://zs.utia.cas.cz

The configuration file example:

[Server]

or_base_uri="http://10.42.0.141:8440/orchestrator/orchestration"

or_base_uri_https="https://10.42.0.141:8441/orchestrator/orchestration"

port="8002"

address="10.42.0.103"

address6="[fe80::483b:e5ff:fe7f:610d]"

Safe the file (F2) and exit the editor (F10).

b. consumedServices.json

mcedit consumedServices.json

Modify the following items in the file:

 requestForm/requesterSystem/port – Number of the Consumer port.

 Modify line

"security" : ""

 preferredProviders/providerSystem/address – Preferred Provider IP address.

 preferredProviders/providerSystem/port – Port number, where the preferred Provider

listen on.

This configuration file should look like this:

{

 "consumerID": "TestconsumerID",

 "requestForm": {

 "requesterSystem": {

 "systemName": "client1",

 "address": "dontcare",

 "port": 8002,

 "authenticationInfo": "null"

 },

 "requestedService": {

 "serviceDefinition": "IndoorTemperature_ProviderExample",

 "interfaces": ["REST-JSON-SENML"],

 "serviceMetadata":{

 "security" : ""

 }

 },

 "orchestrationFlags": {

 "overrideStore" : true,

 "matchmaking" : true,

 "metadataSearch" : false,

 "pingProviders" : false,

 "onlyPreferred" : true,

 "externalServiceRequest" : false

 },

 "preferredProviders": [{

 "providerSystem":{

 "systemName": "SecureTemperatureSensor",

 "address": "10.42.0.103",

 "port":"8000"

 }

 }]

 }

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

60/75

http://zs.utia.cas.cz

}

Save the file (F2) and exit the mcedit editor (F10).

The Debian midnight commander tool can be started from the command line by typing:

mc -s

Run the ConsumerExample

./ConsumerExample

The program should show the following response from the ProviderExample:

Provider Response:

{"e":[{"n": "this_is_the_sensor_id","v":26.0,"t": "1553675692"}],"bn":

"this_is_the_sensor_id","bu": "Celsius"}

The ConsumerExample will fail in the first instance. The database of the Arrowhead-f running on the
RPi3 has to be configured. The ProviderExample and the ConsumerExample have to be connected by
the operator of the databaze. This is described next.

Modification of arrowhead database
The Arrowhead framework running on RPi3 provides phpMyAdmin interface to control its database. To
allow the ConsumerExample to get the ProducerExample service response, follow these steps:

Figure 33: phpMyAdmin interface of the Arrowhead Database

1. On your Win7 or Win 10 PC, start web browser and go to the RPi3 phpMyAdmin web page,
http://10.42.0.141/phpmyadmin (use the IP address of your RPi3).

User name: root password: root

2. Get an ID of the ProducerExample.

Select table arrowhead_test_cloud_1→arrowhead_system

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

61/75

http://zs.utia.cas.cz

and locate the line containing the IP address of the Zynq with system_name
SecureTemperatureSensor.
In our case the ID is 5.

3. Get an ID of the ConsumerExample.

Select table arrowhead_test_cloud_1→ arrowhead_system

Locate the line containing system_name:

client1.

In our case it is 7.

4. Get an ID of the ProducerExample service.

Select table arrowhead_test_cloud_1→ arrowhead_service

Locate the line containing service_definition called:

IndoorTemperature_ProviderExample.
In our case the ID is 55.

5. In table service_registry, check if the ProviderExample is linked with its service.

Link the ProviderExample, its service and the ConsumerExample together. In table

intra_cloud_authorization, add a new line containing: consumer_system_id 7,

provider_system_id 5 and arrowhead_service_id 55.

The ConsumerExample should get the proper response from the ProviderExample, now.

Figure 34: The intra_cloud_authorization table of the Arrowhead Database

Test the Zynq consumer and producer
The ProducerExample server is running on the “Producer” Zynq board, now.

Execute the ConsumerExample client example on the “Consumer” Zynq board.

./ConsumerExample

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

62/75

http://zs.utia.cas.cz

The ConsumerExample client example program should show the modelled constant temperature
response (26.0) from the ProviderExample and exit.

Provider Response:

{"e":[{"n": "this_is_the_sensor_id","v":26.0,"t": "1553675692"}],"bn":

"this_is_the_sensor_id","bu": "Celsius"}

This concludes the complete demo of Producer and Consumer on two Zynq boards omplemented as
C++ SW code compatible with the Arrowhead framework G4.0 lite-installation on the RPi3 board.

Producer service and Consumer client can run on a single Zynqbeery board or two different Zynq
boards. The configuration files and the configuration of the Arrowhead framework database described
in Chapter 6 - Chapter 10 provides setup for single Zynq board.

Change of the setup for two Zynq boards involves only modification of the corresponding Ethernet
addresses assigned by the DHCP server.

The HW accelerated matrix multiplication demo can be executed on both Zynq boards by executing:

/boot/te06_l.elf

See the HW acceleration measured by the number of Arm A9 clock cycles.

Producer with real temperature measurement on zynq
Real temperature of the Xilinx chip of the Zynq board can be measured by modified
ProviderExample.cpp code. This code measures the real temperature of the chip:

#pragma warning(disable:4996)

#include "SensorHandler.h"

#include <sstream>

#include <string>

#include <stdio.h>

#include <thread>

#include <list>

#include <time.h>

#include <iomanip>

#ifdef __linux__

 #include <unistd.h>

#elif _WIN32

 #include <windows.h>

#endif

#define TEMP_RAW_FILE "/sys/bus/iio/devices/iio:device0/in_temp0_ps_temp_raw"

#define TEMP_OFFSET_FILE "/sys/bus/iio/devices/iio:device0/in_temp0_ps_temp_offset"

#define TEMP_SCALE_FILE "/sys/bus/iio/devices/iio:device0/in_temp0_ps_temp_scale"

const std::string version = "4.1";

bool bSecureProviderInterface = false; //Enables HTTPS interface on the application service (with token enabled)

bool bSecureArrowheadInterface = false; //Enables HTTPS interface towards ServiceRegistry AH module

inline void parseArguments(int argc, char* argv[]){

 for(int i=1; i<argc; ++i){

 if(strstr("--secureArrowheadInterface", argv[i]))

 bSecureArrowheadInterface = true;

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

63/75

http://zs.utia.cas.cz

 else if(strstr("--secureProviderInterface", argv[i]))

 bSecureProviderInterface = true;

 }

}

int main(int argc, char* argv[]){

 printf("\n=============================\nProvider Example - v%s\n=============================\n",
version.c_str());

 parseArguments(argc, argv);

 SensorHandler oSensorHandler;

//SenML format

//todo:

//generate own measured value into "measuredValue"

//"value" should be periodically updated

//"sLinuxEpoch" should be periodically updated

 std::string measuredValue; //JSON - SENML format

 time_t linuxEpochTime = std::time(0);

 std::string sLinuxEpoch = std::to_string((uint64_t)linuxEpochTime);

 FILE *f_t_raw, *f_t_off, *f_t_scale;

 if ((f_t_raw = fopen(TEMP_RAW_FILE, "r")) == NULL) {

 printf("Cannot open file %s \n", TEMP_RAW_FILE);

 return -1;

 }

 if ((f_t_off = fopen(TEMP_OFFSET_FILE, "r")) == NULL) {

 printf("Cannot open file %s \n", TEMP_OFFSET_FILE);

 return -1;

 }

 if ((f_t_scale = fopen(TEMP_SCALE_FILE, "r")) == NULL) {

 printf("Cannot open file %s \n", TEMP_SCALE_FILE);

 return -1;

 }

 printf("OK\n");

 int t_raw;

 int t_off;

 float t_scale;

 fscanf(f_t_raw, "%d", &t_raw);

 fscanf(f_t_off, "%d", &t_off);

 fscanf(f_t_scale, "%f", &t_scale);

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

64/75

http://zs.utia.cas.cz

 if (fclose(f_t_raw) == EOF) {

 printf("Cannot close file %s \n", TEMP_RAW_FILE);

 return -1;

 }

 printf("OK\n");

 if (fclose(f_t_off) == EOF) {

 printf("Cannot close file %s \n", TEMP_OFFSET_FILE);

 return -1;

 }

 if (fclose(f_t_scale) == EOF) {

 printf("Cannot close file %s \n", TEMP_SCALE_FILE);

 return -1;

 }

// double value = 26.0;

 // (raw + offset) * scale ... in milidegree Celsius

 float value = ((float)(t_raw + t_off) * t_scale) / 1000.00f;

//convert double to string

 std::ostringstream streamObj;

 streamObj << std::fixed;

 streamObj << std::setprecision(1);

 streamObj << value;

 std::string sValue = streamObj.str();

 measuredValue =

 "{"

 "\"e\":[{"

 "\"n\": \"this_is_the_sensor_id\","

 "\"v\":" + sValue +","

 "\"t\": \"" + sLinuxEpoch + "\""

 "}],"

 "\"bn\": \"this_is_the_sensor_id\","

 "\"bu\": \"Celsius\""

 "}";

//do not modify below this

 oSensorHandler.processProvider(measuredValue, bSecureProviderInterface, bSecureArrowheadInterface);

 while (true) {

 linuxEpochTime = std::time(0);

 sLinuxEpoch = std::to_string((uint64_t)linuxEpochTime);

// if (value < 30.0) value += 0.1;

// else value = 26.0;

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

65/75

http://zs.utia.cas.cz

 if ((f_t_raw = fopen(TEMP_RAW_FILE, "r")) == NULL) {

 printf("Cannot open file %s \n", TEMP_RAW_FILE);

 return -1;

 }

 fscanf(f_t_raw, "%d", &t_raw);

 if (fclose(f_t_raw) == EOF) {

 printf("Cannot close file %s \n", TEMP_RAW_FILE);

 return -1;

 }

 value = ((float)(t_raw + t_off) * t_scale) / 1000.00f;

 printf("Zynq Temp : %f °C\n", value);

 streamObj.clear();

 streamObj.str("");

 streamObj << std::fixed;

 streamObj << std::setprecision(1);

 streamObj << value;

 sValue = streamObj.str();

 measuredValue =

 "{"

 "\"e\":[{"

 "\"n\": \"this_is_the_sensor_id\","

 "\"v\":" + sValue +","

 "\"t\": \"" + sLinuxEpoch + "\""

 "}],"

 "\"bn\": \"this_is_the_sensor_id\","

 "\"bu\": \"Celsius\""

 "}";

 oSensorHandler.processProvider(measuredValue, bSecureProviderInterface, bSecureArrowheadInterface);

 #ifdef __linux__

 sleep(1);

 #elif _WIN32

 Sleep(1000);

 #endif

 }

 printf("Close file %s ... ", TEMP_RAW_FILE);

 if (fclose(f_t_raw) == EOF) {

 printf("FAILED\n");

 return -1;

 }

 printf("OK\n");

 return 0;

}

Figure 35: Modifications of ProviderExample.cpp C to measure temperature of the Zynq chip

All other files of the ProviderExample project remain identical.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

66/75

http://zs.utia.cas.cz

Figure 36: ProviderExample and ConsumerExample clients on Zynq.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

67/75

http://zs.utia.cas.cz

Recompile the ProviderExample project by make. Test it on the Zynq board.

Modified ProviderExample is registered to the Arrowhead database. For debug purposes it also prints
the actual temperature of the chip to its console. See
Figure 36. Modified ConsumerExample connects via the Arrowhead framework. It receives and

displayes the actual chip temperature.

In
Figure 36, two instances of the Ubuntu PuTTY SSH Client are used. Both clients are connected to the

Zynq module to test the Arrowhead framework.

Conclusions

Support for the Arrowhead framework (installed as G4.0 lite on the RPi3 board) has been
demonstrated. See
Figure 36.

The Zynq device remains compatible with the SDSoC 2017.4 system level compiler of HW
accelerators.

It also remains compatible with the 8xSIMD EdkDSP single precision floating point HW accelerator
running in the programmable part of the Zynq device. The firmware for the run-time reconfigurable
8xSIMD EdkDSP IP can be compiled from source code C by compiler application running on the same
Zynq device. Compiled firmware code can be downloaded by Debian user-space C-coded applications
during the run-time without the need to reset or reboot the Zynq board. This application note also
describes the clock-cycle-accurate debug support for the EdkDSP accelerator based on the Xilinx
ChipScope logic analyser instantiated in the programmable logic of the Zynq device.

The documented Arrowhead compatible Zynq Clients bring to the framework the additional support for
the acceleration of part of local computation in the programmable logic HW based on the SDSoC
compiler.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

68/75

http://zs.utia.cas.cz

11. Data Lines on TE0703-05 and TE0706-02 Carrier Boards

Figure 37: Connection of PCBs data lines to connectors on TE0703-05 carrier board

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

69/75

http://zs.utia.cas.cz

Figure 38: Connection of PCBs data lines to connectors on TE0706-02 carrier board

Figure 37 describes connection of PCBs data lines to the connectors on the TE0703-05 carrier board and
Figure 38 for the TE0703-05 carrier board. Table 13 describes the common connections of Zynq pins to TE0703-
05 and TE0706-02 PCB data lines. Users of the development package can use these data for creation of own user
constrains and extend the Vivado 2017.4.1 HW projects generated by the SDSoC 2017.4.1 design environment.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

70/75

http://zs.utia.cas.cz

Table 13: Common Connections of Zynq pins to TE0703-05 and TE0706-02 PCB Data Lines

Zynq Board 3.3V Zynq Board 3.3V Zynq Board 3.3V Zynq Board 1.8V
 C22 B35_L16_N
 D22 B35_L16_P
 G22 B35_L24_N
 H22 B35_L24_P
 B22 B35_L18_N
 B21 B35_L18_P
 A22 B35_L15_N
 A21 B35_L15_P
 G21 B35_L22_N
 G20 B35_L22_P
 D21 B35_L17_N
 E21 B35_L17_P
 B20 B35_L13_N
 B19 B35_L13_P
 C20 B35_L14_N
 D20 B35_L14_P
 G16 B35_L4_N
 G15 B35_L4_P
 C19 B35_L12_N
 D18 B35_L12_P
 F19 B35_L20_N
 G19 B35_L20_P
 A19 B35_L10_N
 A18 B35_L10_P
 A17 B35_L9_N
 A16 B35_L9_P
 B15 B35_L7_N
 C15 B35_L7_P
 D17 B35_L2_N
 D16 B35_L2_P
 B17 B35_L8_N
 B16 B35_L8_P
 E20 B35_L21_N
 E19 B35_L21_P
 C18 B35_L11_N
 C17 B35_L11_P
 F22 B35_L23_N
 F21 B35_L23_P
 E18 B35_L5_N
 F18 B35_L5_P
 D15 B35_L3_N
 E15 B35_L3_P
 F17 B35_L6_N
 G17 B35_L6_P
 E16 B35_L1_N
 F16 B35_L1_P
 H20 B35_L19_N
 H19 B35_L19_P

 AA22 B33_L7_P
 AB22 B33_L7_N
 AA21 B33_L8_P
 AB21 B33_L8_N
 Y19 B33_L11_P
 AA19 B33_L11_N
 Y18 B33_L12_P
 AA18 B33_L12_N
 V15 B33_VREF
 AA17 B33_L17_P
 AB17 B33_L17_N
 AA16 B33_L18_P
 AB16 B33_L18_N
 W20 B33_L4_P
 W21 B33_L4_N
 W17 B33_L13_P
 W18 B33_L13_N
 W16 B33_L14_P
 Y16 B33_L14_N

 AA12 B13_L7_P
 AB12 B13_L7_N
 AA11 B13_L8_P
 AB11 B13_L8_N
 AA9 B13_L11_P
 AA8 B13_L11_N
 AB10 B13_L9_P
 AB9 B13_L9_N
 T4 B13_L20_P
 U4 B13_L20_N
 AB7 B13_L17_P
 AB6 B13_L17_N
 AB5 B13_L16_P
 AB4 B13_L16_N
 Y4 B13_L18_P
 AA4 B13_L18_N
 AB2 B13_L15_P
 AB1 B13_L15_N
 V5 B13_L21_P
 V4 B13_L21_N
 U7 B13_IO25
 U12 B13_L5_P
 U11 B13_L5_N
 U10 B13_L6_P
 U9 B13_L6_N
 V10 B13_L1_P
 V9 B13_L1_N
 Y9 B13_L12_P
 Y8 B13_L12_N
 AA7 B13_L14_P
 AA6 B13_L14_N
 Y6 B13_L13_P
 Y5 B13_L13_N
 V12 B13_L4_P
 W12 B13_L4_N
 W11 B13_L3_P
 W10 B13_L3_N
 Y11 B13_L10_P
 Y10 B13_L10_N
 V8 B13_L2_P
 W8 B13_L2_N
 V7 B13_L23_P
 W7 B13_L23_N
 W6 B13_L24_P
 W5 B13_L24_N
 R6 B13_L19_P
 T6 B13_L19_N
 U6 B13_L22_P
 U5 B13_L22_N
 R7 B13_IO0

 J18 B34_L7_P
 K18 B34_L7_N
 J16 B34_L2_P
 J17 B34_L2_N
 L17 B34_L4_P
 M17 B34_L4_N
 N17 B34_L5_P
 N18 B34_L5_N
 L18 B34_L12_P
 L19 B34_L12_N
 J21 B34_L8_P
 J22 B34_L8_N
 J20 B34_L9_P
 K21 B34_L9_N
 R19 B34_L22_P
 T19 B34_L22_N
 J15 B34_L1_P
 K15 B34_L1_N
 P20 B34_L18_P
 P21 B34_L18_N
 P17 B34_L20_P
 P18 B34_L20_N
 L21 B34_L10_P
 L22 B34_L10_N
 M19 B34_L13_P
 M20 B34_L13_N
 T16 B34_L21_P
 T17 B34_L21_N
 M21 B34_L15_P
 M22 B34_L15_N
 R20 B34_L17_P
 R21 B34_L17_N
 R18 B34_L23_P
 T18 B34_L23_N
 M16 B34_VREF
 N19 B34_L14_P
 N20 B34_L14_N

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

71/75

http://zs.utia.cas.cz

12. References

[1] TE0720-03-2IF; Part: XC7Z020-2CLG484I; 1 GByte DDR; Industrial Grade (Tj = -40°C to +100°C)

http://shop.trenz-electronic.de/en/TE0720-03-2IF-Xilinx-Zynq-module-XC7Z020-2CLG484I-ind.-temp.-range-1-Gbyte
https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/TE0720/REV03/Documents/TRM-TE0720-03.pdf
https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/Modules_and_Module_Carriers/4x5/TE0720/REV03/
Documents/SCH-TE0720-03-2IF.PDF

 TE0720-03-1QF; Part: XA7Z020-1CLG484Q; 1 GByte DDR; Automotive Grade (Tj = -40°C to +125°C)
https://shop.trenz-electronic.de/en/TE0720-03-1QF-Xilinx-Zynq-module-ind.-temp.-range-with-Automotive-XA7Z020-1CLG484Q
https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/Modules_and_Module_Carriers/4x5/TE0720/REV03/
Documents/SCH-TE0720-03-1QF.PDF

 TE0720-03-214S-1C; Part: XC7Z014S-1CLG484C; 1 GByte DDR; Industrial Grade (Tj = 0°C to +85°C)
https://shop.trenz-electronic.de/en/TE0720-03-14S-1C-SoC-Module-with-Xilinx-Zynq-Z-7014S-Single-core-1-GByte-DDR3

https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/Modules_and_Module_Carriers/4x5/TE0720/REV03/
Documents/SCH-TE0720-03-14S-1C.PDF

[2] Heatsink for TE0720, spring-loaded embedded;
https://shop.trenz-electronic.de/en/26922-Heatsink-for-TE0720-spring-loaded-embedded?c=38

[3] TE0706-02 Carrierboard for Trenz Electronic Modules with 4 x 5 cm Form factor
https://shop.trenz-electronic.de/en/TE0706-02-TE0706-Carrierboard-for-Trenz-Electronic-Modules-with-4-x-5-cm-Form-factor?c=261
https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/carrier_boards/TE0706/REV02/documents/SCH-TE0706-02.PDF
https://wiki.trenz-electronic.de/display/PD/TE0706+TRM

 TE0703-05 Carrier board for Trenz Electronic Modules with 4 x 5 cm Form factor

 https://shop.trenz-electronic.de/en/TE0703-05-TE0703-Carrier-board-for-Trenz-Electronic-modules-with-4-x-5-cm-form-factor?c=261
 https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/Modules_and_Module_Carriers/4x5/4x5_Carriers/
 TE0703/REV05/Documents/SCH-TE0703-05.PDF
 https://wiki.trenz-electronic.de/display/PD/TE0703+TRM

[4] Pmod USBUART: Serial converter & interface.
https://shop.trenz-electronic.de/en/24242-Pmod-USBUART-USB-to-UART-Interface?c=80

[5] XMOD FTDI JTAG Adapter - Xilinx compatible
https://shop.trenz-electronic.de/en/TE0790-02-XMOD-FTDI-JTAG-Adapter-Xilinx-compatible

[6] Vivado HLx Web Install Client - 2017.4.1.
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2015-4.html

[7] SDSoC - 2017.4.1 Full Product Installations.

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/sdx-development-environments/sdsoc/2015-
4.html

[8] PRODUCTIVE 4.0 Project www page in UTIA with pointers to evaluation packages for download
http://sp.utia.cz/index.php?ids=projects/productive40

https://shop.trenz-electronic.de/en/TE0720-03-2IF-Xilinx-Zynq-module-XC7Z020-2CLG484I-ind.-temp.-range-1-Gbyte
https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/TE0720/REV03/Documents/TRM-TE0720-03.pdf
https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/Modules_and_Module_Carriers/4x5/TE0720/REV03/Documents/SCH-TE0720-03-2IF.PDF
https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/Modules_and_Module_Carriers/4x5/TE0720/REV03/Documents/SCH-TE0720-03-2IF.PDF
https://shop.trenz-electronic.de/en/TE0720-03-1QF-Xilinx-Zynq-module-ind.-temp.-range-with-Automotive-XA7Z020-1CLG484Q
https://shop.trenz-electronic.de/en/TE0720-03-14S-1C-SoC-Module-with-Xilinx-Zynq-Z-7014S-Single-core-1-GByte-DDR3
https://shop.trenz-electronic.de/en/26922-Heatsink-for-TE0720-spring-loaded-embedded?c=38
https://shop.trenz-electronic.de/en/TE0706-02-TE0706-Carrierboard-for-Trenz-Electronic-Modules-with-4-x-5-cm-Form-factor?c=261
https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/carrier_boards/TE0706/REV02/documents/SCH-TE0706-02.PDF
https://wiki.trenz-electronic.de/display/PD/TE0706+TRM
https://shop.trenz-electronic.de/en/TE0703-05-TE0703-Carrier-board-for-Trenz-Electronic-modules-with-4-x-5-cm-form-factor?c=261
https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/Modules_and_Module_Carriers/4x5/4x5_Carriers/%20TE0703/REV05/Documents/SCH-TE0703-05.PDF
https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/Modules_and_Module_Carriers/4x5/4x5_Carriers/%20TE0703/REV05/Documents/SCH-TE0703-05.PDF
https://wiki.trenz-electronic.de/display/PD/TE0703+TRM
https://shop.trenz-electronic.de/en/24242-Pmod-USBUART-USB-to-UART-Interface?c=80
https://shop.trenz-electronic.de/en/TE0790-02-XMOD-FTDI-JTAG-Adapter-Xilinx-compatible
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2015-4.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/sdx-development-environments/sdsoc/2015-4.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/sdx-development-environments/sdsoc/2015-4.html
https://sp.utia.cz/index.php?ids=projects/productive40

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

72/75

http://zs.utia.cas.cz

13. Base Release Evaluation Package

The base, release evaluation package can be downloaded from UTIA www pages [8] free of charge.

Deliverables:
The base, release evaluation package [8] includes evaluation bitstreams with single (8xSIMD) EdkDSP IP working
in parallel with selected HW-accelerated SDSoC algorithms on the Trenz Electronic TE0720-03-2IF, TE0720-03-
1QF and TE0720-03-14S-1C module [1] located on the Trenz Electronic TE0706-02 or TE0703-05 carrier [3] with
PMOD USBUART adapter [4] and XMOD FTDI JTAG Adapter [5].

The evaluation package [8] includes bitstreams compiled with the evaluation version of the (8xSIMD) EdkDSP IP
core. Bitstreams contain these IPs:

bce_fp12_1x8_0_axiw_v1_10_c Evaluation version of the AXI-lite interface
bce_fp12_1x8_40 Evaluation version of the floating point data path

The base, release evaluation version of the (8xSIMS) EdkDSP IP is compiled into bitstreams with a HW limit on
number of vector operations. The termination of the nonexclusive, non-transferable evaluation license of this
evaluation IP core is reported in advance by the demonstrator on the PMOD USBUART terminal. The evaluation
designs will run again after the reset (TE0706-02: Reset push button S2; TE0703-05: Reset push button S1).

The base evaluation package [8] includes these binary applications:

edkdsppp.elf EdkDSP C pre-processor binary for ARM PetaLinux running on the evaluation board.
edkdspcc.elf EdkDSP C compiler binary for ARM PetaLinux running on the evaluation board.
edkdsppsm.elf EdkDSP ASM compiler binary for ARM PetaLinux running on the evaluation board.

These binary applications have no time restriction. The user of the evaluation package has nonexclusive, non-
transferable license from UTIA to use these utilities for compilation of the firmware for the Xilinx PicoBlaze6
processor inside of the 8xSIMD EdkDSP IP in precompiled designs. The source code of these compilers is owned
by UTIA and it is not provided in the evaluation package.

The base evaluation package [8] includes the Debian image:

te0720-debian.zip Zip archive with te0720-debian.img image for installation on the Zynq SD card.

The base, release evaluation package [8] includes demonstration firmware in C source code for the Xilinx
PicoBlaze6 processor for the family of UTIA EdkDSP accelerators for the Trenz Electronic TE0720-03-2IF, TE0720-
03-1QF and TE0720-03-14S-1C module [1] on Trenz Electronic TE0706-02 or TE0703-05 carrier board [3].

HW boards are not part of deliverables. HW can be ordered separately from [1] – [5].

Any and all legal disputes that may arise from or in connection with the use, intended use of or license for the
software provided hereunder shall be exclusively resolved under the regional jurisdiction relevant for UTIA AV
CR, v. v. i. and shall be governed by the law of the Czech Republic. See also the Disclaimer section.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

73/75

http://zs.utia.cas.cz

14. Extended Debug Evaluation Package for PRODUCTIVE 4.0
partners

The extended, debug evaluation package includes MicroBlaze and PicoBlaze6 C code and precompiled
bitstreams of HW projects for the Trenz Electronic TE0720-03-2IF, TE0720-03-1QF and TE0720-03-14S-1C
module [1] located on the Trenz Electronic TE0706-02 or TE0703-05 carrier [3] with PMOD USBUART adapter [4]
and XMOD FTDI JTAG Adapter [5] with the evaluation version of the (8xSIMD) EdkDSP IP. Partners of the ECSEL
PRODUCTIVE 4.0 project [8] can order this extended package from UTIA AV CR, v.v.i., by email request for
quotation to kadlec@utia.cas.cz.

UTIA AV CR, v.v.i., will provide to the PRODUCTIVE 4.0 project partner quotation by email. After confirmation of
the quotation by the customer, UTIA AV CR, v.v.i., will send to the customer this invoice:

The extended, debug evaluation package with MicroBlaze and PicoBlaze6 C code and precompiled bitstream
of HW projects for the Trenz Electronic TE0720-03-2IF, TE0720-03-1QF and TE0720-03-14S-1C module [1]
located on the Trenz Electronic TE0706-02 or TE0703-05 carrier [3] with PMOD USBUART adapter [4] and
XMOD FTDI JTAG Adapter [5] with the evaluation version of the 8xSIMD EdkDSP IP for the partners in the
ECSEL PRODUCTIVE 4.0 project
(Without VAT) 0,00 Eur

After receiving confirmation from the PRODUCTIVE 4.0 project partner about the zero-invoice received, UTIA AV
CR, v.v.i. will send within 5 working days by standard mail printed version of this application note together with
DVD with the Deliverables described in this section.

Deliverables:
The extended, debug evaluation package for PRODUCTIVE 4.0 partners [8] includes MicroBlaze and PicoBlaze6 C
code and precompiled bitstreams of HW projects. MicroBlaze and PicoBlaze6 SW projects can be modified and
recompiled by the PRODUCTIVE 4.0 project partner.

The extended, debug evaluation version of the UTIA 8xSIMD EdkDSP accelerator IP is provided in precompiled
bitstreams of HW projects with these IPs:

bce_fp12_1x8_0_axiw_v1_10_c Evaluation version of the AXI-lite interface
bce_fp12_1x8_40 Evaluation version of the floating point data path

The extended, debug evaluation version of the 8xSIMS EdkDSP IP is compiled into bitstream with an HW limit on
number of vector operations. The termination of the nonexclusive, non-transferable evaluation license of this
evaluation IP core is reported in advance by the demonstrator on the PMOD USBUART terminal. The evaluation
designs will run again after the reset (TE0706-02: Reset push button S2; TE0703-05: Reset push button S1).

The extended, debug evaluation package [8] includes these binary applications:

edkdsppp.elf EdkDSP C pre-processor binary for ARM PetaLinux running on the evaluation board.
edkdspcc.elf EdkDSP C compiler binary for ARM PetaLinux running on the evaluation board.
edkdsppsm.elf EdkDSP ASM compiler binary for ARM PetaLinux running on the evaluation board.
edkdspasm.elf EdkDSP ASM compiler binary for ARM PetaLinux running on the evaluation board.

These binary applications have no time restriction. The user of the evaluation package has nonexclusive, non-
transferable license from UTIA to use these utilities for compilation of the firmware for the Xilinx PicoBlaze6

mailto:kadlec@utia.cas.cz

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

74/75

http://zs.utia.cas.cz

processor inside of the UTIA EdkDSP accelerators in precompiled designs. The source code of these compilers is
owned by UTIA and it is not provided in the evaluation package.

The extended, debug evaluation package for PRODUCTIVE 4.0 partners includes the Debian image:
te0720-debian.zip Zip archive with te0720-debian.img image for installation on the Zynq SD card.

The extended, debug evaluation package for PRODUCTIVE 4.0 partners includes demonstration firmware in C
source code for the Xilinx PicoBlaze6 processor for the family of UTIA EdkDSP accelerators for the Trenz
Electronic TE0720-03-2IF, TE0720-03-1QF and TE0720-03-14S-1C module [1] on Trenz Electronic TE0706-02 or
TE0703-05 carrier board [3].

The extended, debug evaluation package for PRODUCTIVE 4.0 partners includes SDK SW projects with C source
code for MicroBlaze. The extended, debug evaluation package [8] includes static library for MicroBlaze
processor:

libwal.a SDK 2017.4.1 UTIA static library with EdkDSP API for MicroBlaze

This library has no time restriction. Source code of this library is not provided in this evaluation package.

HW boards are not part of deliverables. HW can be ordered separately from references [1] – [5].

Partners of the ECSEL PRODUCTIVE 4.0 project [8] can order the hardware [1] - [5] directly from the company
Trenz Electronic or order the complete evaluation system from UTIA AV CR, v.v.i.

In case of an order from UTIA AV CR, v.v.i., an email request for a quotation to kadlec@utia.cas.cz is required.
UTIA AV CR, v.v.i., will provide to the PRODUCTIVE 4.0 project partner quotation by email. After confirmation of
the quotation by the PRODUCTIVE 4.0 project partner, UTIA AV CR, v.v.i., will buy from company Trenz Electronic
boards [1]-[5] with cables and power supply. UTIA will assemble and test the complete evaluation system and
send them to the PRODUCTIVE 4.0 project partner for price identical to the price offered by the company Trenz
Electronic plus the transport cost and the VAT.

Any and all legal disputes that may arise from or in connection with the use, intended use of or license for the
software provided hereunder shall be exclusively resolved under the regional jurisdiction relevant for UTIA AV
CR, v. v. i. and shall be governed by the law of the Czech Republic. See also the Disclaimer section.

mailto:kadlec@utia.cas.cz

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

75/75

http://zs.utia.cas.cz

Disclaimer

This disclaimer is not a license and does not grant any rights to the materials distributed herewith. Except as
otherwise provided in a valid license issued to you by UTIA AV CR v.v.i., and to the maximum extent permitted
by applicable law:

(1) THIS APPLICATION NOTE AND RELATED MATERIALS LISTED IN THIS PACKAGE CONTENT ARE MADE
AVAILABLE "AS IS" AND WITH ALL FAULTS, AND UTIA AV CR V.V.I. HEREBY DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
(2) UTIA AV CR v.v.i. shall not be liable (whether in contract or tort, including negligence, or under any other
theory of liability) for any loss or damage of any kind or nature related to, arising under or in connection with
these materials, including for any direct, or any indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought
by a third party) even if such damage or loss was reasonably foreseeable or UTIA AV CR v.v.i. had been advised
of the possibility of the same.

Critical Applications:
UTIA AV CR v.v.i. products are not designed or intended to be fail-safe, or for use in any application requiring
fail-safe performance, such as life-support or safety devices or systems, Class III medical devices, nuclear
facilities, applications related to the deployment of airbags, or any other applications that could lead to death,
personal injury, or severe property or environmental damage (individually and collectively, "Critical
Applications"). Customer assumes the sole risk and liability of any use of UTIA AV CR v.v.i. products in Critical
Applications, subject only to applicable laws and regulations governing limitations on product liability.

