

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved.

Application Note
http://sp.utia.cz

Data Movers in DTRiMC tool
for TE0726-03M-07S board

Jiři Kadlec, Zdeněk Pohl, Lukáš Kohout, Raissa Likhonina

kadlec@utia.cas.cz xpohl@utia.cas.cz kohoutl@utia.cas.cz likhonina@utia.cas.cz

Revision history
Rev. Date Author Description

0 6.04.2020 J. Kadlec Initial draft
1 11.08.2021 J. Kadlec App note addressing: Data Movers in DTRiMC

tool for TE0726-03M-07S board

mailto:kadlec@utia.cas.cz
mailto:xpohl@utia.cas.cz
mailto:kohoutl@utia.cas.c

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

ii

Table of Contents
1 DTRiMC tool data movers for TE0726-03M-07S board .. 1
2 8xSIMD FP03x8 floating point accelerator for TE0726-03M-07S board 2
3 ARM SW API for Streaming of Data ... 3
4 C++ projects for evaluation of HW accelerated copy of data .. 3
5 Power consumption ... 8
6 ILA – In-circuit Logic Analyzer .. 9
7 References ...11
8 APPENDIX - Confidence test ..12

Compilation and debug of projects from source code ..13
DEBUG of SW application from Xilinx SDK 2018.2 ...14
Guide for compilation and use of C MEX functions in scilab-cli16

9 APPENDIX – DTRiMC tool guidelines ..17
Guide for compilation of HW in the DTRiMC tool ..17
Guide for configuration and compilation of PetaLinux in the DTRiMC tool17
Guide for configuration and compilation of Debian OS in the DTRiMC tool20
Guide for creation of SDSoC platform for TE0726-03M-07S in the DTRiMC tool22
Guide for creation of shared library and HW kernel in the DTRiMC tool22
Guide for retargeting to another device ...24

Disclaimer ...25

Table of Figures
Figure 1: Design Time Resource integration of Model Composer DTRiMC tool. 1
Figure 2: Data path implemented in the programmable logic of the TE0726-03M-07S board 2
Figure 3: Performance of data copy for different data movers and for SW. 5
Figure 4: Design with ZC data movers. .. 6
Figure 5: Design with DMA data movers.. 6
Figure 6: Design with SG data movers. ... 6
Figure 7: Design with SG-malloc data movers. .. 6
Figure 8: Programmable logic resources used in designs with different data movers. 7
Figure 9: Debian terminal, TE0726M-07S device with ZC data movers in the PL. 8
Figure 10: Power consumption for data copy for different data movers and Debian OS. 8
Figure 11: TE0726M-07S device, mousepad editor on remote X11 desktop, terminal. 9
Figure 12: AXI-S bus captured by ILA for design with ZC data movers.10
Figure 8: Test connection to Linux TCF Agent. ...14

Acknowledgement

This work has been partially supported from project FitOptiVis, project number ECSEL
783162 [9], [10] and the corresponding Czech NFA (MSMT) institutional support project
8A18013.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

1/25

1 DTRiMC tool data movers for TE0726-03M-07S board
This application note describes package for evaluation of data movers with Design Time
Resource integration of Model Composer DTRiMC tool. See Figure 1. The DTRiMC tool
serves for integration AXI-S IPs for Zynq device on TE0726-03M-07S board [1], [2].

Due to the limited size of the PL logic, the AXI-S IPs is simple AXI-Steam 1024x32bit FIFO
with AXI-S I/O connected to data movers. The data movers are generated in the DTRiMC
tool by the Xilinx SDSoC 2018.2 compiler [3]. This application note serves for description of
definition of these data movers and for comparison of basic properties (area used,
performance) of these data movers. Figure 2 describes the top level, SW/HW view of the
generated Zynq system.

Figure 1: Design Time Resource integration of Model Composer DTRiMC tool.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

2/25

ZynqBerry TE0726-03M-07S [1] works with Xilinx XC07007S-1C device with a single core
ARM A9 32 bit processor, 512 MB of DDR3 memory and limited size of programmable logic
on the single 28 nm chip. The ZynqBerry board has RaspBerryPi 2 form factor. It can be
extended with RaspBerryPi 2 compatible shields. The ZynqBerry board TE0726-03M-07S is
designed and manufactured by company Trenz Electronic [1], [2], [6].

User SW can be cross-compiled by the g++ compiler in Xilinx SDK [4] on Win 10 PC. The
Debian utility „make“ can be also used for compilation of user C++ SW on A9 processor.

The HW data communication is represented for the SW developer as a shared C++ library
with simple SW API, identical for several HW data-mover alternatives generated by the Xilinx
SDSoC 2018.2 compiler [3].

2 8xSIMD FP03x8 floating point accelerator for TE0726-03M-07S
board

The FP03x8 HW accelerator serves for run-time reprogrammable 8xSIMD single precision
floating point computations. The internal structure of data path is described in Figure 2.

Figure 2: Data path implemented in the programmable logic of the TE0726-03M-07S board

Input:
• Data copied via AXI stream interface controlled by HW data mover data2hw from the

reserved part of the ARM processor DDR3 memory.
Output:

• Data copied via AXI stream interface controlled by HW data mover capture to the
reserved part of the ARM processor DDR3 memory.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

3/25

Connectivity:

• AXI stream data input from ARM to the HW data path. The side channel indicates the
last transferred word sent.

• AXI stream data output from the HW data path to ARM. The output AXI stream side
channel indicates the last transferred word.

Interfaces: Device: Clock:

• Data stream AXI-S 32 bit xc7z007sclg225-1 115 MHz
• ARM A9 system clock xc7z007sclg225-1 666 MHz

3 ARM SW API for Streaming of Data

Serial streaming SW API for HW accelerated data movement from/to the non-cacheable
linear address space memory is defined by sequence of two calls to these asynchronous
non-blocking functions:

void data2hw_wrapper(unsigned *src, unsigned len);
void capture_wrapper(unsigned *storage, unsigned len);

Example:

data2hw_wrapper((unsigned*)A1_A2, len); //1
capture_wrapper((unsigned*)B1_B2, len); //2
…
sds_wait(1);
sds_wait(2);

unsigned *src is pointer to memory start of vector of 32bit wide words of data source
unsigned *storage is pointer to memory start of vector of 32bit wide words of data
destination

sds_wait() synchronization functions are implemented as:

• Functions performing SW pooling in case of DMA and Zero Copy (ZC) data movers.
• Interrupt service routines initiated by an interrupt from the HW data mover in case of

the Scatter Gather (SG) HW data movers.

Arm A9 processor can execute some additional SW instructions in parallel with HW
accelerated copy of data. This SW code should be located in place marked by the … dots.

Calls to blocking functions sds_wait(1) and sds_wait(2) is obligatory. ARM A9
processor SW waits there for the complete end of the HW supported data transfer.

All HW data movers supporting the data communication are represented for the SW
developer in shared C++ Debian OS libraries.

4 C++ projects for evaluation of HW accelerated copy of data

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

4/25

The evaluation package accompanying this application note contains the Xilinx Vivado
2018.2 base support package HW project, four Xilinx SDSoC 2018.2 HW projects and four
Xilinx SDK C++ SW application projects serving for evaluation of four HW data movers.

The base support package HW project contains in PL part of the device one 32 bit wide AXI-
Stream FIFO HW IP. The SDSoC projects generate four versions of HW data-movers from
specification in format of CPP functions with pragmas. The access functions for these
SDSoC generated HW data movers are exported by the SDSoC projects into four shared
libraries. The shared libraries are linked with the Debian OS SW user applications in the
Xilinx SDK SW projects. Test applications run on the 32 bit single core, ARM A9 processor of
the xc7z007sclg225-1 device on the TE0726-03M-07S board.

• Zero-Copy (ZC) data movers. HW accelerated copy of data from/to reserved, non-

cacheable, linear address space memory area.

Directory (C++): copy_zc_1x1_sw
SW C++ project: copy_1x1_sw
Shared C++ library: ./Debug/sd_card/libcopy_zc_1x1_hw.so
Shared C++ library: ./Release/sd_card/libcopy_zc_1x1_hw.so

• Dma (DMA) data movers. HW accelerated copy of data from/to reserved, non-cacheable,
linear address space memory area.

Directory (C++): copy_dma_1x1_sw
SW C++ project: copy_1x1_sw
Shared C++ library: ./Debug/sd_card/libcopy_dma_1x1_hw.so
Shared C++ library: ./Release/sd_card/libcopy_dma_1x1_hw.so

• Scatter-Gather (SG) data movers. HW accelerated copy of data from/to reserved, non-
cacheable, linear address space memory area.

Directory (C++): copy_sg_1x1_sw
SW C++ project: copy_1x1_sw
Shared C++ library: ./Debug/sd_card/libcopy_sg_1x1_hw.so
Shared C++ library: ./Release/sd_card/libcopy_sg_1x1_hw.so

• Scatter-Gather Malloc (SG-malloc) data movers. HW accelerated copy of data from/to
standard Debian OS memory area.

Directory (C++): copy_sg_malloc_1x1_sw
SW C++ project: copy_1x1_sw
Shared C++ library: ./Debug/sd_card/libcopy_sg_malloc_1x1_hw.so
Shared C++ library: ./Release/sd_card/libcopy_sg_malloc_1x1_hw.so

The shared Debian Stretch 9.8 OS libraries for the SDK 2018.2 C++ SW flow (g++ compiler)
provide interfaces to the HW data movers. In all four cases, the copy_1x1_sw project
demonstrates performance of HW supported data copy for a single precision floating point
matrix [64x64].

HW data mover performance is compared with the optimized (-O3) ARM host SW
implementation of SW data copy of a single precision floating point matrix [64x64] from user

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

5/25

space memory to linear addressable non-cacheable memory area and back to user space
memory.

TE0726M-07S MByte/s
ZC HW data movers 170.4
ZC SW copy

 19.9

DMA HW data movers 151.1
DMA SW copy

 19.9

SG HWdata movers 79.1
SG SW copy

 19.9

SG-malloc HW data movers 9.8
SG-malloc SW copy 229.6

Figure 3: Performance of data copy for different data movers and for SW.

Matrix [64x64] has 4096 32 bit FP32 (single precision floating point) words. HW supported
copy is performed in four blocks of 1024 32 bit words. HW data movers can copy one 32 bit
word each 125 MHz clock in all four cases. This corresponds to the peak performance 500
Mbyte/s. However, this performance is not reached due to the ARM SW overhead related to
data mover initialization.

The ARM SW data mover initialization overhead is relatively short in case of ZC and DMA data
movers. Data are present in the linear addressable, non-cacheable memory.

The initialization overhead is longer in case of SG data mover even if data are present in the
linear addressable, non-cacheable memory. This is due to the overhead related to creation,
and release of SW threads implementing the interrupt service functions.

SG-malloc performs copy of data allocated by standard C++ malloc() function in standard,
cached Debian user space memory. SG-malloc data movers have relatively large overhead
and relatively low performance if transferred data vectors are short (like in the implemented
example).

The advantage of SG-malloc data movers is the possibility to work directly with the Debian
user space data allocated by the standard C/C++ malloc() function. Also SW copy
performance is high in the SG-malloc case. SW copy performed by ARM works with
potentially cached data in the Debian user space.

SG and SG-malloc data movers use interrupts and interrupt service routines to indicate the
end of data mover operation. Interrupt service routines are implemented as non-active
Debian OS process threads activated only by the coming interrupt. This solution removes the
SW pooling and results in reduced ARM processor load. The associated cost is an additional
SW overhead related to creating, execution and termination of interrupt service process
threads. ZC and DMA data movers use SW pooling in the sds_wait()synchronisation
functions. It requires 100% load of one ARM A9 processor core. The TE0726M-07S device
works with single core ARM A9 processor.
Four versions of data movers provided in the evaluation package accompanying this
application note is presented in Figure 4, Figure 5, Figure 6 and Figure 7.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

6/25

Figure 4: Design with ZC data movers.

Figure 5: Design with DMA data movers.

Figure 6: Design with SG data movers.

Figure 7: Design with SG-malloc data movers.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

7/25

Designs with different data movers have these programmable logic resource requirements.
See Figure 8.

TE0726M-07S Site Type Used Available Util%
ZC Slice LUTs 7581 14400 52.65
ZC Slice Registers 10864 28800 37.72
ZC

Block RAM Tile 9 50 18.00

DMA Slice LUTs 8421 14400 58.48
DMA Slice Registers 12492 28800 43.38
DMA

Block RAM Tile 12.5 50 25.00

SG Slice LUTs 12819 14400 89.02
SG Slice Registers 20555 28800 71.37
SG

Block RAM Tile 22 50 44.00

SG-malloc Slice LUTs 10856 14400 75.39
SG-malloc Slice Registers 16715 28800 58.04
SG-malloc Block RAM Tile 17.5 50 35.00

Figure 8: Programmable logic resources used in designs with different data movers.

Design with ZC data movers use minimal PL resources. See Figure 4 and Figure 8.

Design with DMA data movers is using two AXI Direct Memory Access HW IPs. It is
presented in Figure 5.

Design with SG data movers is using two AXI Direct Memory Access HW IPs configured for
SG DMA data transfers. Data movers are connected to S_AXI_HP0 and S_AXI_HP1 high
performance ports of the ZYNQ processor. Design is using two interrupts. Design is
presented in Figure 6.

Design with SG-malloc data movers is using one AXI Direct Memory Access HW IPs
configured for SG DMA data transfers. It is connected to the S_AXI_ACP advanced cache
coherent port of the ZYNQ processor. Design is using two interrupts. Design is presented in
Figure 7.

Design with SG and SG-malloc data movers require nearly all PL resources of the small
TE0726M-07S device. See Figure 6, Figure 7 and Figure 8.

Details of all four designs can be analysed in the block diagrams (in pdf vector format).
These diagrams are included in the evaluation package accompanying this application note.

Designs can be recompiled in SDSoC 2018.2 and Vivado 2018.2 can be used to see all
details and configuration of all HW IPs.

Debian console listing from SW application copy_1x1_sw.elf on system with ZC data
movers is presented in Figure 9.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

8/25

Figure 9: Debian terminal, TE0726M-07S device with ZC data movers in the PL.

5 Power consumption
Power consumption is measured on input power line 5V. All power supply is derived from this
single power source.

TE0726M-07S Power consumption [W]
ZC HW data movers, running copy_1x1_sw 2.75
ZC Debian OS, idle

2.45

DMA HW data movers, running copy_1x1_sw 2.75
DMA Debian OS. idle

2.45

SG HW data movers, running copy_1x1_sw 2.75
SG Debian OS, idle

2.50

SG-malloc HW data movers, running copy_1x1_sw 2.70
SG-malloc Debian OS, idle 2.50

Figure 10: Power consumption for data copy for different data movers and Debian OS.

TE0726M-07S device with ZC data movers in the PL.with Debian OS (right part) is presented
on Figure 11. The left part of the screen is a remote X11 desktop (running on a Win 10 PC
with VMWare player Ubuntu OS).

TE0726M-07S is connected via wired Ethernet and Ubuntu PuTTY terminal with enabled
X11 forwarding to the screen and executes Debian mousepad text editor (running on Arm A9)
with Debian file system. Mouse and keyboard for the mousepad application is also forwarded
to the Arm by the remote X11 connection.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

9/25

Figure 11: TE0726M-07S device, mousepad editor on remote X11 desktop, terminal.

6 ILA – In-circuit Logic Analyzer
System created by the Design Time Resource integration of Model Composer DTRiMC tool
default scripts includes HW IP of the Vivado-Lab tool 2018.2 ILA – In-circuit Logic Analyzer.
It is connected to the output of the 1024x32bit FIFO HW IP. See Figure 2. The start of ILA
capturing can be triggered by specific logic combination of input values defined by user.

ILA monitor displays values of AXI-S stream bus with the 115 MHz clock resolution. It is
configured to store 1024 data samples. See Figure 12.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

10/25

Figure 12: AXI-S bus captured by ILA for design with ZC data movers.

Figure 12 presents example of data transfer captured by ILA. It corresponds to ARM host
SW copy_1x1_sw.elf and HW design with ZC data movers. It performs HW accelerated
copy of [64x64] floating point matrix. AXI-S control signals and part of 32 bit wide floating
point data are displayed at bit level.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

11/25

7 References

[1] "ZynqBerry" Module with Xilinx Z-7007S single-core in Raspberry Pi Form Factor
https://shop.trenz-electronic.de/en/TE0726-03-07S-1C-ZynqBerry-Module-with-Xilinx-Z-
7007S-single-core-in-Raspberry-Pi-Form-Factor?c=350

[2] Trenz Electronic Wiki – TE0726 Resources
https://wiki.trenz-electronic.de/display/PD/TE0726+Resources

[3] SDSoC - 2018.2 Full Product Installation
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis/archi
ve-sdsoc.html

[4] Software Development Kit Standalone Web Install Client - 2018.2
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis/archi
ve-sdk.html

[5] Vivado Lab Solutions - 2018.2
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-
design-tools/archive.html

[6] "ZynqBerry" Module with Xilinx Zynq-7010 in Raspberry Pi Form Factor
https://shop.trenz-electronic.de/en/TE0726-03M-ZynqBerry-Module-with-Xilinx-Zynq-7010-in-
Raspberry-Pi-Form-Factor?c=350

[7] FP01x8 Accelerator on TE0726-03M
http://sp.utia.cz/index.php?ids=results&id=te0726_fp01x8

[8] DTRiMC tool for TE0726-03M board
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0726_fp01x8_ila_DTRiMC

[9] FitOptiVis From the cloud to the edge – smart IntegraTion and OPtimisation Technologies
for highly efficient Image and VIdeo processing Systems
https://fitoptivis.eu/

[10] FitOptiVis From the cloud to the edge - smart IntegraTion and OPtimization
Technologies for highly efficient Image and VIdeo processing Systems
http://sp.utia.cz/index.php?ids=projects/fitoptivis

https://shop.trenz-electronic.de/en/TE0726-03-07S-1C-ZynqBerry-Module-with-Xilinx-Z-7007S-single-core-in-Raspberry-Pi-Form-Factor?c=350
https://shop.trenz-electronic.de/en/TE0726-03-07S-1C-ZynqBerry-Module-with-Xilinx-Z-7007S-single-core-in-Raspberry-Pi-Form-Factor?c=350
https://wiki.trenz-electronic.de/display/PD/TE0726+Resources
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis/archive-sdsoc.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis/archive-sdsoc.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis/archive-sdk.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis/archive-sdk.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html
https://shop.trenz-electronic.de/en/TE0726-03M-ZynqBerry-Module-with-Xilinx-Zynq-7010-in-Raspberry-Pi-Form-Factor?c=350
https://shop.trenz-electronic.de/en/TE0726-03M-ZynqBerry-Module-with-Xilinx-Zynq-7010-in-Raspberry-Pi-Form-Factor?c=350
http://sp.utia.cz/index.php?ids=results&id=te0726_fp01x8
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0726_fp01x8_ila_DTRiMC
https://fitoptivis.eu/
http://sp.utia.cz/index.php?ids=projects/fitoptivis

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

12/25

8 APPENDIX - Confidence test

This is basic confidence test of the evaluation package.

Unzip evaluation package to Win 10 directory of your choice. We will use:
c:\home\work\TS82fp01x8_TE0726_DTRiMC_xc7z07s\

Precompiled HW and SW projects are located in directory:
c:\home\work\TS82fp01x8_TE0726_DTRiMC_xc7z07s\xc7z07s_deb_eval_fifo_
ila_release\copy_zc_1x1_sw

Compressed SD card image with ARM Debian OS is located in directory:
c:\home\work\TS82fp01x8_TE0726_DTRiMC_xc7z07s\xc7z07s_deb_eval_fifo_
ila_release_sdcard\

INSTALLATION OF TOOLS

• Install Xilinx SDK 2018.2 on Win 10 PC 64 bit [3].
• Install Xilinx Lab Tools 2018.2 on Win 10 PC 64 bit [5].
• Install Win32DiskImager for writing of image to 16 GB SD card, (Class 10).
• Install Putty (for USB based serial console and Ethernet based serial console).
• Unzip ARM Debian OS disk image on Win 10 PC and use the Win32DiskImager to

write the disk image (16 GB) from the PC to the 16 GB SD card (Class 10).

Before test on the ZynqBerry board, you have to write to the on-board FLASH the correct
BOOT.BIN file with the bit-stream. It is done by performing these steps:

• Remove SD card from the TE0726-03M-07S board.
• Connect the TE0726-03M-07S board to PC by the USB serial terminal cable.
• Copy the BOOT.BIN file from

c:\home\work\TS82fp01x8_TE0726\xc7z07s_deb_eval_fifo_ila_rel
ease\copy_zc_1x1_sw\Release\sd_card\BOOT.BIN
to
c:\home\work\TS82fp01x8_TE0726\xc7z07s_deb_eval_fifo_ila\zsy
s\prebuilt\boot_images\m\NA\BOOT.BIN

• Change directory to
c:\home\work\TS82fp01x8_TE0726\xc7z07s_deb_eval_fifo_ila\zsy
s

Execute this script in Win 10 terminal:

program_flash_binfile.cmd

This script will write content of the BOOT.BIN file to the ZynqBerry board flash.

• Power-off the TE0726-03M-07S board by removing the USB cable from the PC.

HW SETUP
• Insert the SD card with Debian OS disk image to the TE0726-03M-07S board.
• Connect PC and TE0726-03M-07S board to Ethernet.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

13/25

• Connect USB serial terminal cable to TE0726-03M-07S to PC. This will power-on the
board.

TEST
• TE0726-03M-07S board will start to boot Debian OS. The boot process starts by

reading data from the BOOT.BIN present in the internal flash. Only the second stage
of the boot process is performed from the SD card.

• In Win 10 PC, open Putty terminal. Set it to:
 (115200 bps, 8 data bits, stop bit 1, parity none, flow control off)

• Use Putty terminal to login as user: root password: root
• Change directory to /boot
• Export path to the shared library. Type in the Putty Debian OS terminal:

export LD_LIBRARY_PATH=/boot

•
Start application code by typing in the Putty Debian OS terminal:

./copy_zc_1x1_sw.elf

RESULT
• The application will copy single precision floating point by:

o SW on host ARM A9 processor
o HW acclerated on host ARM A9 processor by zero copy (ZC) data movers.

• Results of ARM SW and HW accelerated copy are compared to be identical and
Mbyte/s performance is measured, computed and displayed. See Figure 9.

Compilation and debug of projects from source code
The evaluation package includes SW projects for Xilinx SDK 2018.2 tool running on Win 10.

These projects can be recompiled for ARM and executed on Zynq with or without debugging
support. Open SDK 2018.2 tool, in this working directory:

c:\home\work\TS82fp01x8_TE0726_DTRiMC_xc7z07s\xc7z07s_deb_eval_fifo_
ila_release\copy_zc_1x1_sw\

Projects in this directory link to this shared library:
c:\home\work\TS82fp01x8_TE0726_DTRiMC_xc7z07s\xc7z07s_deb_eval_fifo_
ila_release\copy_zc_1x1_sw\Release\sd_card\libcopy_zc_1x1_hw.so
or
c:\home\work\TS82fp01x8_TE0726_DTRiMC_xc7z07s\xc7z07s_deb_eval_fifo_
ila_release\copy_zc_1x1_sw\Debug\sd_card\libcopy_zc_1x1_hw.so

Projects have two configurations:

• Debug for debugging with –O0 flag with debug information symbols included.
• Release for maximal performance with -O3 flag and without debug symbols.

You can modify and re-compile the SW code in the Xilinx SDK 2018.2 tool on Win 10 PC.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

14/25

DEBUG of SW application from Xilinx SDK 2018.2
The application can be executed or debugged from the SDK 2018.2 tool. SDK debugger
needs environment information about the location of the actual shared library on the board.

Before start of Debug, copy complete content of this Debug directory:

c:\home\work\TS82fp01x8_TE0726_DTRiMC_xc7z07s\xc7z07s_deb_eval_fifo_
ila_release\copy_zc_1x1_sw\Debug\sd_card*.*

to the top directory of the SD card visible in the Win 10 PC:

.

Insert the SD card to the board and power on the board by connecting USB cable to the PC.

Alternatively, you can also use the Ethernet connection to perform binary copy to the SD
card. If you use Ethernet, you have to type in the Debian OS console

reboot

to reboot the Debian OS.

To debug from the PC in the Xilinx SDK debugger GUI, the Zynq TCF server has to be
accessible from the PC via Ethernet. This can be tested in the SDK. See Figure 13.

Figure 13: Test connection to Linux TCF Agent.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

15/25

Recompile the ARM host SW application directly on the TE0726-03M-07S board

Xilinx SDK 2018.2 tool creates files for the make utility, which can be used for compilation of
SW application directly on the board with use of the g++ (C++) compiler of the ARM Debian
OS.

You can copy complete SDK 2018.2 project to the Debian file system and compile on board
by copy complete content of the C++ SDK project directory:

c:\home\work\TS82fp01x8_TE0726_DTRiMC_xc7z07s\xc7z07s_deb_eval_fifo_
ila_release\copy_zc_1x1_sw\

to the ARM host Debian OS directory:

/home/copy_zc_1x1_sw/

Change the directory in ARM Debian OS to:

cd /home/copy_zc_1x1_sw/Debug/

Export the relative path to the Debug version of the shared library:

export LD_DATA_PATH=../../Debug/sd_card

In the Debian OS terminal, clean and then recompile the project by typing:

make clean
make

Finally, execute the re-compiled C++ Debug version of the SW application compiled by the
ARM host Debian OS g++ compiler. Type in the Debian console:

./copy_zc_1x1_sw.elf

You are done. The compiled application is running on the TE0726 board. See Figure 9.
To close correctly the Debian OS, type in the Debian OS terminal:

halt

This will close all open files on the SD file system and halt the ARM Debian OS.

Now you can safely remove the SD card. The USB serial terminal can remain connected.
You can modify the SD card in the Win 10 PC.
You can insert modified SD card.
You have to press the reset on the board to initiate a new Debian OS boot process (without
the power-off power-on step).

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

16/25

Guide for compilation and use of C MEX functions in scilab-cli
The Debian OS image includes scilab-cli SW interpreter. To use it take these steps.
In Debian OS terminal, change directory to

cd /home/xc7z07s_deb_eval_fifo_ila_release_scilab/cc/mmultf

In ARM Debian OS terminal, Start scilab-cli interpret by typing

scilab-cli

In scilab-cli, execute script mmultf_cc.sce by command

exec(”mmultf_cc.sce”)

This script will compile C MEX function mmultf.c to shared library libmex_mmultf.so in
the same directory
Quit scilab-cli by typing

quit

Copy created shared library libmex_mmultf.so

/home/xc7z07s_deb_eval_fifo_ila_release_scilab/cc/mmultf/libmex_mmult
f.so

to

/home/xc7z07s_deb_eval_fifo_ila_release_scilab/test/test_mmultf_4xB/
libmex_mmultf.so

In Debian terminal, change directory to

/home/xc7z07s_deb_eval_fifo_ila_release_scilab /test/test_mmultf_4xB

Start scilab-cli by typing

scilab-cli

In scilab-cli execute script mmultf_4xB_test.sce by command

exec(”mmultf_4xB_test.sce”)

scilab-cli will execute mmultf() C MEX function present in shared library
libmex_mmultf.so and generate reference header files in the current directory . Files
contain single precision floating point reference data used for testing of 8xSIMD HW
accelerators. Quit scilab-cli by typing.

quit

Use same process to compile and use all other reference MEX C functions.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

17/25

9 APPENDIX – DTRiMC tool guidelines

Guide for compilation of HW in the DTRiMC tool
1. Unpack the DTRiMC evaluation package to Win 10 directory.

In this guide, we unpack DTRiMC package to this directory:
c:\home\work\TS82fp01x8_TE0726_DTRiMC_xc7z07s\xc7z07s_deb_eval_fifo_ila\
Change directory to:
c:\home\work\TS82fp01x8_TE0726_DTRiMC_xc7z07s\xc7z07s_deb_eval_fifo_ila\z
sys\

2. On Win 10, open dos terminal window, change directory to the folder
c:\home\work\TS82fp01x8_TE0726_DTRiMC_xc7z07s\xc7z07s_deb_eval_fifo_ila\z
sys\

3. To overcome limitations of Win 10 related to the need of short directory paths, use
the script _use_virtual_drive.cmd to create a virtual short path to your directory drive
X:\zusys Type command:
_use_virtual_drive.cmd
Select X as name of the virtual drive and select 0 to create the virtual drive.
Go to the created virtual short-path directory by typing in the win 10 terminal:
X:

cd zsys

4. Use text editor of your choice and open and modify script design_basic_settings.sh
Select correct path to SDSoC 2018.2 tool installed on your Win7 or Win 10. Line 38:
@set XILDIR=C:/Xilinx
Select proper Xilinx device:
@set PARTNUMBER=4
The selected number corresponds to the number defined in file
X:\zusys\board_files/TE0808_board_files.csv
Verify, if line 78 of script design_basic_settings.sh sets the SDSoC flow support by:
ENABLE_SDSOC=1
@set ENABLE_SDSOC=1

5. Start the Xilinx Vivado 2018.2 and create the design by executing of script:
X:\zsys\vivado_create_project_guimode.cmd

6. Optional:
You can use Vivado automation and to the created HW design Xilinx In Circuit Logic
Analyzer (ILA) monitor to enable capturing of selected accelerator outputs of your
choice.

7. In Vivado console, execute command:
TE::hw_build_design -export_prebuilt

After the Vivado compilation, new hardware description file zsys.hdf is generated in
folder:
X:\zsys\prebuilt\hardware\m\zsys.hdf

Guide for configuration and compilation of PetaLinux in the DTRiMC tool
The configuration and compilation of the Petalinux 2018.2 kernel and Debian 9.8 Stretch
image as the FitOptiVis run time resource for the Zynq TE0726-03M-07S board is described
now. The configuration has to be performed in the Ubuntu 16.04 LTS OS.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

18/25

The DTRiMC tool is configured for use of Ubuntu 16.04 LTS in the VMware Workstation
Player in Win 10. The Petalinux 2018.2 distribution can be downloaded to the Ubuntu 16.04
LTS from

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedde
d-design-tools/2018-2.html

and installed to the default Ubuntu directory:
/opt/petalinux/petalinux-v2018.2-final

The standard PetaLinux 2018.2 distribution requires few modifications.

1. Copy content of these Win 10 directories:
X:\zsys\prebuilt

X:\zsys\os

to Ubuntu directories:
/home/devel/work/TS82fp01x8_TE0726_DTRiMC_xc7z07s/xc7z07s_deb_eval_fifo_i
la/zsys/prebuilt/

/home/devel/work/TS82fp01x8_TE0726_DTRiMC_xc7z07s/xc7z07s_deb_eval_fifo_i
la/zsys/os/

2. In Ubuntu, open terminal window and set path to the PetaLinux 2018.2:
source /opt/petalinux/petalinux-v2018.2-final/settings.sh

3. Change directory to the directory copied from the evaluation package with pre-
defined configuration:
cd
/home/devel/work/TS82fp01x8_TE0726_DTRiMC_xc7z07s/xc7z07s_deb_eval_fifo_i
la/zsys/os/petalinux/

It contains a predefined configuration according to Zynq TE0726-03M-07S board
requirements.

4. The zsys.hdf file created in Win 10 in Vivado 2018.2 tool is present in the Ubuntu
folder:
/home/devel/work/TS82fp01x8_TE0726_DTRiMC_xc7z07s/xc7z07s_deb_eval_fifo_i
la/zsys/prebuilt/prebuilt/hardware/m/

5. Use the zusys.hdf file as input for the PetaLinux configuration by (on single line)
petalinux-config --get-hw-
description=/home/devel/work/TS82fp01x8_TE0726_DTRiMC_xc7z07s/xc7z07s_deb
_eval_fifo_ila/zsys/prebuilt/prebuilt/hardware/m/

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2018-2.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2018-2.html

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

19/25

6. Verify if the PetaLinux filesystem location is changed from the ramdisk to the extra
partition on the SD card, select:
Image Packaging Configuration --->

 Root filesystem type (SD card) --->

7. Verify if option to generate boot args. automatically is disabled and if user defined
arguments are set to:
earlycon clk_ignore_unused root=/dev/mmcblk0p2 rootfstype=ext4 rw
rootwait quiet
Leave the configuration, 3x Exit and Yes.

8. Build PetaLinux, from the bash terminal execute
petalinux-build

9. Files image.ub, u-boot.elf and bl31.elf are created in:
/home/devel/work/TS82fp01x8_TE0726_DTRiMC_xc7z07s/xc7z07s_deb_eval_fifo_i
la/zsys/os/petalinux/images/linux/image.ub
/home/devel/work/TS82fp01x8_TE0726_DTRiMC_xc7z07s/xc7z07s_deb_eval_fifo_ila/z
sys/os/petalinux/images/linux/u-boot.elf

/home/devel/work/TS82fp01x8_TE0726_DTRiMC_xc7z07s/xc7z07s_deb_eval_fifo_ila/z
sys/os/petalinux/images/linux/bl31.elf

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

20/25

Guide for configuration and compilation of Debian OS in the DTRiMC tool
The file system is based on the latest stable version of Debian 9.8 Stretch distribution (03.
25. 2019). Follow the steps below.

10. In Debian, cd to the folder with PetaLinux:
cd
/home/devel/work/TS82fp01x8_TE0726_DTRiMC_xc7z07s/xc7z07s_deb_eval_fifo_i
la/zsys/os/petalinux/

11. The 32bit Debian image will be created by execution of the mkdebian.sh script. The
script checks all the tools that are needed to create the image, most of them are a
standard part of the Ubuntu 16.04 LTS distribution.
When some of them are missing, install them by:
sudo apt install Package

Table 1: tools with a corresponding package name.

Tool Package
dd coreutils
losetup mount
parted parted
lsblk util-linux
mkfs.vfat dosfstools
mkfs.ext4 e2fsprogs
debootstrap debootstrap
gzip gzip
cpio cpio
chroot coreutils
apt-get apt
dpkg-reconfigure debconf
sed sed
locale-gen locales
update-locale locales
qemu-ARM-static qemu-user-static

12. Create the Debian image. It will consist of two partitions.

The file system of the first one will be FAT32. This partition is dedicated for image of
the PetaLinux kernel. The second partition will contain the Debian using EXT4 file
system. Create the Debian image from the external Ethernet repositories by this
command:
chmod ugo+x mkdebian.sh

sudo ./mkdebian.sh

During the creation procedure, you will be asked to set language. Choose English
(US). The resultant image file will be called te0726-debian.img its size will be 7 GB.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

21/25

13. Compress the created image to file te0726-debian.zip:

zip te0726-debian te0726-debian.img

14. Copy compressed image file from Ubuntu
/home/devel/work/TS82fp01x8_TE0726_DTRiMC_xc7z07s/xc7z07s_deb_eval_fifo_i
la/zsys/os/petalinux/te0726-debian.zip

to Win 10 file:
X:\zsys\prebuilt\os\petalinux\default\te0726-debian.zip

15. Copy these files from Ubuntu
/home/devel/work/TS82fp01x8_TE0726_DTRiMC_xc7z07s/xc7z07s_deb_eval_fifo_i
la/zsys/os/petalinux/images/linux/image.ub

/home/devel/work/TS82fp01x8_TE0726_DTRiMC_xc7z07s/xc7z07s_deb_eval_fifo_i
la/zsys/os/petalinux/images/linux/u-boot.elf

/home/devel/work/TS82fp01x8_TE0726_DTRiMC_xc7z07s/xc7z07s_deb_eval_fifo_i
la/zsys/os/petalinux/images/linux/bl31.elf

to Win 10 files:
X:\zsys\prebuilt\os\petalinux\default\image.ub

X:\zsys\prebuilt\os\petalinux\default\u-boot.elf

X:\zsys\prebuilt\os\petalinux\default\bl31.elf

16. In Ubuntu, clean Petalinux project files
petalinux-build -x mrproper

17. In Ubuntu, delete files
/home/devel/work/TS82fp01x8_TE0726_DTRiMC_xc7z07s/xc7z07s_deb_eval_fifo_i
la/zsys/os/petalinux/TE0726-debian.zip

/home/devel/work/TS82fp01x8_TE0726_DTRiMC_xc7z07s/xc7z07s_deb_eval_fifo_i
la/zsys/os/petalinux/TE0726-debian.img

18. In Ubuntu, close all applications and shut down Linux.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

22/25

19. In Win 10, close the VMware Workstation Player.
You can continue with preparation of the Zynq board with created files:

• Petalinux kernel image image.ub
• Compressed Debian image TE0726-debian.zip
• U-boot program u-boot.elf

This ends the DTRiMC tool configuration and compilation steps for the Petalinux and Debian.

Guide for creation of SDSoC platform for TE0726-03M-07S in the DTRiMC
tool

20. In the open Vivado 2018.2 console, create and compile the initial BOOT.bin file and
the initial SW modules by execution of the command:
TE::sw_run_hsi

The resulting BOOT.bin file will be located in the folder
X:\zsys\prebuilt\boot_images\m\u-boot\BOOT.bin

21. These files are created:
X:\zsys\prebuilt\software\m\hello_te0726.elf

X:\zsys\prebuilt\software\m\zynq_fsbl.elf

X:\zsys\prebuilt\software\m\zynq_fsbl_flash.elf

File zynq_fsbl.elf is correct first stage board loader (FSBL) file, while the
zynq_fsbl_flash.elf is special FSBL file used only for programming of the on board
flash.

22. Move zynq_fsbl_flash.elf file to some different temporary location before next
step.

23. In Vivado 2018.2 console, create the SDSoC platform by execution of the command:
TE::ADV::beta_util_sdsoc_project

The SDSoC 2018.2 platform is generated in the directory
X:\SDSoC_PFM\te0726\03m\zsys

and it is also packed into the ZIP file in directory
X:\SDSoC_PFM\te0726\

24. Return zynq_fsbl_flash.elf file back from the temporary location to
X:\zsys\prebuilt\software\m\zynq_fsbl_flash.elf
It will be used later on by the TE0726-03M-07S board flash programming script
program_flash_binfile.cmd

Guide for creation of shared library and HW kernel in the DTRiMC tool
25. On Win 10, in the open dos terminal window, cancel the current virtual drive X: by

executing from the command line
_use_virtual_drive.cmd

and response (1)
26. Change directory to

c:\home\work\TS82fp01x8_TE0726_DTRiMC_xc7z07s\xc7z07s_deb_eval_fifo_ila\S
DSoC_PFM_src\te0726\03m\

27. In Win 10, open dos terminal window and use the copy of the script
_use_virtual_drive.cmd to create a new virtual short path to get short SDSoC
directory X:\03m

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

23/25

_use_virtual_drive.cmd
Select X as name of the virtual drive and select (0) to create the virtual drive.
Go to the created virtual short-path directory by:
X:

cd 03m

28. Open SDSoC project in directory
X:\03m

29. In SDSoC import HW kernel design project
fp01x8_v26x1_hw

from the directory
c:\home\work\TS82fp01x8_TE0726_DTRiMC_xc7z07s\xc7z07s_deb_eval_fifo_ila\S
DSoC_PFM_src\te0726\03m\fp01x8_v26x1_hw\
Define the custom SDSoC platform
X:\03m\zsys

30. Change imported project from Debug to the Release compilation target
31. Compile project by the SDSoC 2018.2 compiler
32. Result of compilation are the SD cards with the BOOT.BIN file and the shared object

library file libcopy_zc_1x1_hw.so in the directory:
X:\03m\fp01x8_v26x1_hw\Release\sd_card\

33. Copy content of the directory
X:\03m\fp01x8_v26x1_hw\Release\sd_card\

to
c:\home\work\TS82fp01x8_TE0726_DTRiMC_xc7z07s\xc7z07s_deb_eval_fifo_ila_r
elease\copy_zc_1x1_sw\Release\sd_card\
and also to
c:\home\work\TS82fp01x8_TE0726_DTRiMC_xc7z07s\xc7z07s_deb_eval_fifo_ila_r
elease\copy_zc_1x1_sw\Debug\sd_card\

34. Optional:
Copy ILA nets definition files debug_nets.ltx and zsys_wrapper.ltx from the
directory
X:\03m\fp01x8_v26x1_hw\Release_sds\p0\vivado\prj\prj.runs\impl_1\

to
c:\home\work\TS82fp01x8_TE0726_DTRiMC_xc7z07s\xc7z07s_deb_eval_fifo_ila_r
elease\copy_zc_1x1_sw\Release\sd_card\

and also to
c:\home\work\TS82fp01x8_TE0726_DTRiMC_xc7z07s\xc7z07s_deb_eval_fifo_ila_r
elease\copy_zc_1x1_sw\Debug\sd_card\

35. Clean SDSoC project to save disk space.
36. Close SDSoC 2018.2 tool.
37. The created BOOT.BIN file will be used for programming of TE0726-03M-07S board

flash. The shared object library file libcopy_zc_1x1_hw.so is to be linked to
applications compiled for ARM in SDK and also used in the runtime on ARM.

This is described in the first section of the chapter 10 APPENDIX - Confidence test.

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

24/25

Guide for retargeting to another board
The DTRiMC tool is configured for Trenz Electronic module with ID=4, board TE0726-03M-
07S part xc7z007sclg225-1, memory 0.5GB with short module name 7s [1].
However, the DTRiMC tool scripts can be modified to target different Trenz Electronic board
[6].

Use text editor of your choice and open and modify script design_basic_settings.sh
Modify ID of the device from @set PARTNUMBER=4 to @set PARTNUMBER=3.

Trenz Electronic modules supported by this release of the DTRiMC tool.

Trenz Electronic modules supported by this release of the DTRiMC tool.

ID Board Partname Memory ShortName

3 te0726-03m xc7z010clg225-1 0.5GB m
4 te0726-03-07s-1c xc7z007sclg225-1 0.5GB 7s

After the change of the target to ID=3, implement all design steps with the DTRiMC tool for
the retargeted board [6]. It has dual core ARM A9 processor and larger PL resources.

You also download and use the related application notes and evaluation packages [7] and [8]
for the te0726-03m board [6].

http://sp.utia.cz

© 2021 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

25/25

Disclaimer
This disclaimer is not a license and does not grant any rights to the materials distributed
herewith. Except as otherwise provided in a valid license issued to you by UTIA AV CR,
v.v.i., and to the maximum extent permitted by applicable law:
(1) THIS APPLICATION NOTE AND RELATED MATERIALS LISTED IN THIS PACKAGE
CONTENT ARE MADE AVAILABLE "AS IS" AND WITH ALL FAULTS, AND UTIA AV CR
V.V.I. HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED,
OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR
PURPOSE; and
(2) UTIA AV CR, v.v.i. shall not be liable (whether in contract or tort, including negligence, or
under any other theory of liability) for any loss or damage of any kind or nature related to,
arising under or in connection with these materials, including for any direct, or any indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill,
or any type of loss or damage suffered as a result of any action brought by a third party)
even if such damage or loss was reasonably foreseeable or UTIA AV CR, v.v.i. had been
advised of the possibility of the same.
Critical Applications:
UTIA AV CR, v.v.i. products are not designed or intended to be fail-safe, or for use in any
application requiring fail-safe performance, such as life-support or safety devices or systems,
Class III medical devices, nuclear facilities, applications related to the deployment of airbags,
or any other applications that could lead to death, personal injury, or severe property or
environmental damage (individually and collectively, "Critical Applications"). Customer
assumes the sole risk and liability of any use of UTIA AV CR, v.v.i. products in Critical
Applications, subject only to applicable laws and regulations governing limitations on product
liability.

	1 DTRiMC tool data movers for TE0726-03M-07S board
	2 8xSIMD FP03x8 floating point accelerator for TE0726-03M-07S board
	3 ARM SW API for Streaming of Data
	4 C++ projects for evaluation of HW accelerated copy of data
	5 Power consumption
	6 ILA – In-circuit Logic Analyzer
	7 References
	8 APPENDIX - Confidence test
	Compilation and debug of projects from source code
	DEBUG of SW application from Xilinx SDK 2018.2
	Guide for compilation and use of C MEX functions in scilab-cli

	9 APPENDIX – DTRiMC tool guidelines
	Guide for compilation of HW in the DTRiMC tool
	Guide for configuration and compilation of PetaLinux in the DTRiMC tool
	Guide for configuration and compilation of Debian OS in the DTRiMC tool
	Guide for creation of SDSoC platform for TE0726-03M-07S in the DTRiMC tool
	Guide for creation of shared library and HW kernel in the DTRiMC tool
	Guide for retargeting to another board

	Disclaimer

